K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

còn cách làm khác không ạ?

 

8 tháng 6 2016

theo mik hình như  ở vế trái phải là x^3/y^2 chứ

10 tháng 3 2020

(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=>  2(x^2 + y^2 + z^2 - xy - yz - zx) = 0

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0

<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0

<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0

<=> x - y = 0 và y - z = 0 và z - x = 0

<=> x = y và y = z và z = x

<=> x = y = z

3 tháng 1 2017

chệu nghe

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

12 tháng 3 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)

Đặt xy=a ; yz=b ; xz =c 

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)

Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)

mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)

\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)

\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)

Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)

=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)

Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3