K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1

Ở hình a, em sử dụng 1 đường thẳng song song AB và CD qua B' và D' lần lượt cắt AA' và CC' tại E và F

Khi đó 2 tam giác A'B'E và C'D'F đồng dạng (3 cặp cạnh song song) nên dễ dàng suy ra đpcm

Hình b tương tự, chỉ cần qua D' kẻ 1 đường song song AD rồi lại đồng dạng là xong

9 tháng 1

Anh ơi, không biết em hiểu không đúng thì phải. Đường thẳng qua B' và D' // AB và CD. Nhưng B'D' và AB; CD chéo nhau ạ 

9 tháng 6 2021

(Dòng khoanh đỏ ở dấu tương đương đầu tiên)Có nghĩa là chia cả hai vế cho \(\dfrac{5\pi}{3}\) ấy

(Dòng khoanh đỏ ở dấu tương đương thứ hai) Xét \(cos\pi x=\dfrac{1}{10}+k\dfrac{6}{5}\) (*)

Do \(-1\le cos\pi x\le1\)\(\Leftrightarrow-1\le\dfrac{1}{10}+k\dfrac{6}{5}\le1\)

\(\Leftrightarrow-\dfrac{11}{12}\le k\le\dfrac{3}{4}\) mà k nguyên \(\Rightarrow k=0\)

Thay k=0 vào (*)\(\Rightarrow cos\pi x=\dfrac{1}{10}\)

Làm tương tự với cái bên dưới \(-1\le\dfrac{1}{2}+k\dfrac{6}{5}\le1\) \(\Leftrightarrow-\dfrac{5}{4}\le k\le\dfrac{5}{12}\Rightarrow\left[{}\begin{matrix}k=0\\k=-1\end{matrix}\right.\)

Thay k=0 với k=-1 sẽ ra được \(\left[{}\begin{matrix}cos\pi x=\dfrac{1}{2}\\cos\pi x=-\dfrac{7}{10}\end{matrix}\right.\)

(Với mỗi \(cos\pi x\) sẽ nhận được hai họ nghiệm => Tổng tất cả là 6 họ nghiệm)

9 tháng 6 2021

Vì \(cosx\in\left[-1;1\right]\Rightarrow\left[{}\begin{matrix}-1\le\dfrac{1}{10}+k\dfrac{6}{5}\le1\left(1\right)\\-1\le\dfrac{1}{2}+k\dfrac{6}{5}\le1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-\dfrac{11}{12}\le k\le\dfrac{9}{12}\Leftrightarrow k=0\Rightarrow cosx=\dfrac{1}{10}\)

\(\left(2\right)\Leftrightarrow-\dfrac{15}{12}\le k\le\dfrac{5}{12}\Leftrightarrow\left[{}\begin{matrix}k=0\\k=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cosx=-\dfrac{7}{10}\end{matrix}\right.\)

14 tháng 1 2020

hơi khó đấy

2 tháng 9 2021

Rút chỉ còn (m.(kq))/a^2 thoy nha mn, m là phần số í

NV
2 tháng 9 2021

\(\dfrac{4kq.x}{\sqrt{\left(x^2+a^2\right)^3}}=\dfrac{4kq.x}{\sqrt{\left(x^2+\dfrac{a^2}{2}+\dfrac{a^2}{2}\right)^3}}\le\dfrac{4kq.x}{\sqrt{\dfrac{27.x^2.a^4}{4}}}=\dfrac{4kq.x}{\dfrac{3\sqrt{3}}{2}.x.a^2}=\dfrac{8\sqrt{3}.kq}{9a^2}\)

Dấu "=" xảy ra khi \(x=\dfrac{a}{\sqrt{2}}\)

20 tháng 12 2021

Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E

⇒E∈(SBC)⇒E∈(SBC)

Do AD song song BE, áp dụng Talet:

ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE

⇒MN⇒MN là đường trung bình tam giác SAE

⇒MN//SE⇒MN//(SBC)

I
11 tháng 12 2023

đề có sai k ạ :?
bạn thử vẽ hình xem

NV
29 tháng 7 2021

\(\Leftrightarrow cosx+sinx+\dfrac{cosx+sinx}{sinx-cosx}=0\)

\(\Leftrightarrow\left(cosx+sinx\right)\left(1+\dfrac{1}{sinx-cosx}\right)=0\)

Chuyển vế rồi đặt nhân tử chung thôi em