Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
Xét \(I_1=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)cosxdx=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)d\left(sinx\right)\)
Đặt \(sinx=t\Rightarrow t\in\left[0;1\right]\Rightarrow f\left(t\right)=5-t\)
\(I_1=2\int\limits^1_0\left(5-t\right)dt=9\)
Xết \(I_2=3\int\limits^1_0f\left(3-2x\right)dx=-\dfrac{3}{2}\int\limits^1_0f\left(3-2x\right)d\left(3-2x\right)\)
Đặt \(3-2x=t\Rightarrow t\in\left[1;3\right]\Rightarrow f\left(t\right)=t^2+3\)
\(I_2=-\dfrac{3}{2}\int\limits^1_3\left(t^2+3\right)dt=\dfrac{3}{2}\int\limits^3_1\left(t^2+3\right)dt=22\)
\(\Rightarrow I=9+22=31\)
Đặt \(f\left(x\right)=\dfrac{1}{3}x^3-x^2+mx+1\Rightarrow f'\left(x\right)=x^2-2x+m\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}x^2-2x+m\ge0;\forall x\ge1\\f\left(1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m+\dfrac{1}{3}\ge0\end{matrix}\right.\) \(\Rightarrow m\ge1\)
\(\Rightarrow m=\left\{1;2;3\right\}\)
1. Chọn B.
2. Chọn B.
3. Chọn D.
4. Chọn B.
5. Chọn D.
6. Chọn A.
7. Chọn D.
8. Chọn A.
9. Chọn D.
10. Chọn C.
11. Chọn A.
12.Chọn B.
\(AB=\sqrt{SA^2+SB^2}=2a\)
Hệ thức lượng: \(SH.AB=SA.SB\Rightarrow SH=\dfrac{SA.SB}{AB}=\dfrac{a\sqrt{3}}{2}\)
Hệ thức lượng lần 2: \(SA^2=AH.AB\Rightarrow AH=\dfrac{SA^2}{AB}=\dfrac{a}{2}\)
\(\Rightarrow\dfrac{BA}{HA}=4\)
Mà đường thẳng BH cắt (SAD) tại A \(\Rightarrow d\left(B;\left(SAD\right)\right)=4.\left(H;\left(SAD\right)\right)\)
Kẻ \(HK\perp SA\Rightarrow HK\perp\left(SAD\right)\) (khá dễ chứng minh điều này, hiển nhiên \(AD\perp\left(SAB\right)\Rightarrow\left(SAD\right)\perp\left(SAB\right)\) \(\Rightarrow SA\) là giao tuyến của 2 mp vuông góc (SAD) và (SAB). HK vuông góc với giao tuyến nên vuông góc (SAD))
\(\Rightarrow HK=d\left(H;\left(SAD\right)\right)\)
Hệ thức lượng: \(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{AH^2}=\dfrac{16}{3a^2}\Rightarrow HK=\dfrac{a\sqrt{3}}{4}\)
\(\Rightarrow d\left(B;\left(SAD\right)\right)=4HK=a\sqrt{3}\)
Chọn A