K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 4 2021

Hai tam giác vuông CAB và CFE đồng dạng (chung góc C)

\(\Rightarrow\dfrac{CF}{CA}=\dfrac{EF}{AB}=\dfrac{AD}{AB}=\dfrac{AD}{3}\)

\(\Rightarrow\dfrac{AC-AF}{AC}=\dfrac{AD}{3}\Leftrightarrow\dfrac{AC-2}{AC}=\dfrac{AD}{3}\Rightarrow AD=3\left(\dfrac{AC-2}{AC}\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{3}{2}AC\)

\(S_{ADEF}=AD.AF=2AD=6\left(\dfrac{AC-2}{AC}\right)\)

Theo đề bài: \(S_{ADEF}=\dfrac{1}{2}S_{ABC}\Rightarrow6\left(\dfrac{AC-2}{AC}\right)=\dfrac{1}{2}.\dfrac{3}{2}AC\)

\(\Leftrightarrow8\left(AC-2\right)=AC^2\Leftrightarrow AC^2-8AC+16=0\)

\(\Leftrightarrow\left(AC-4\right)^2=0\Leftrightarrow AC=4\)

Vậy \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\) \(\Rightarrow S_{ADEF}=3\)

23 tháng 4 2021

sai roi tinh dien tich hinh chu nhat mak? dau phai hinh tam giac doc ki de di ak!

25 tháng 10 2021

ai giải giúp em đi ạ em đang cần gấp lắm ạ 

25 tháng 8 2021

18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)

19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)

\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)

20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)

25 tháng 8 2021

21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)

22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)

23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

28 tháng 8 2021

Bài 3 : 

a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Thay x = 6 ta được : \(-\left(6-1\right)^3=-\left(5\right)^3=-125\)

b, \(8-12x+6x^2-x^3=\left(2-x\right)^3\)

Thay x = 12 ta được : \(\left(2-12\right)^3=\left(-10\right)^3=-1000000\)

Bài 4 : 

a, \(A=163^2+74.163+37^2=163^2+2.37.163+37^2\)

\(=\left(163+37\right)^2=\left(200\right)^2=40000\)

28 tháng 8 2021

Trả lời:

Bài 3: 

a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Thay x = 6 vào biểu thức trên, ta có:

\(-\left(6-1\right)^3=-5^3=-125\)

b, \(8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)

Thay x = 12 vào biểu thức trên, ta có:

\(\left(2-12\right)^3=\left(-10\right)^3=-1000\)

Bài 4:

a, Ta có: \(A=\) \(163^2+74.163+37^2=163^2+2.163.37+37^2=\left(163+37\right)^2=200^2\)

            \(B=\)\(147^2-94.147+47^2=147^2-2.147.47+47^2=\left(147-47\right)^2=100^2\)

Vì \(200^2>100^2\)

nên \(A>B\)

b, Ta có: \(C=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(=2^2+4^2+...+100^2-1^2-3^2-...-99^2\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

\(=1.3+1.7+...+1.199\)

\(=3+7+...+199\)

\(=\frac{\left(199+3\right).50}{2}=5050\)  (50 là số số hạng)

\(D=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(=\left(3.7\right)^8-\left[\left(21^4\right)^2-1\right]=21^8-21^8+1=1\)

Vì \(5050>1\)

nên \(C>D\)

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

30 tháng 6 2016

a) \(\sqrt{169}=13\) và \(\sqrt{196}=14\)

bài 3 :
a) \(A=\frac{\sqrt{72}}{\sqrt{2}}+2\frac{\sqrt{27}}{\sqrt{3}}-3\frac{\sqrt{28}}{\sqrt{63}}=\frac{22}{3}\)tương tự

30 tháng 6 2016

Bạn có thể giải chi tiết hơn cho mình dc ko bạn

8 tháng 10 2016

đề như nào vậy bạn

8 tháng 10 2016

nó yêu cầu tính hay phân tích

DD
6 tháng 10 2021

Bài 3: 

a) \(\left(2-3x\right)^2-\left(3-x\right)^2=\left[\left(2-3x\right)-\left(3-x\right)\right]\left[\left(2-3x\right)+\left(3-x\right)\right]\)

\(=\left(-1-2x\right)\left(5-4x\right)\)

b) \(49\left(x-3\right)^2-9\left(x+2\right)^2\)

\(=\left[7\left(x-3\right)\right]^2-\left[3\left(x+2\right)\right]^2\)

\(=\left[\left(7x-21\right)-\left(3x+6\right)\right]\left[\left(7x-21\right)+\left(3x+6\right)\right]\)

\(=\left(4x-27\right)\left(10x-15\right)\)

c) \(2xy-x^2-y^2+16=16-\left(x-y\right)^2=\left(16-x+y\right)\left(16+x-y\right)\)

d) \(2\left(x-3\right)+3\left(x^2-9\right)=2\left(x-3\right)+3\left(x-3\right)\left(x+3\right)\)

\(=\left(x-3\right)\left(3x+11\right)\)

e) \(16x^2-\left(x^2+4\right)^2=\left(4x-x^2-4\right)\left(4x+x^2+4\right)\)

\(=-\left(x-2\right)^2\left(x+2\right)^2\)

f) \(1-2x+2yz+x^2-y^2-z^2=\left(x-1\right)^2-\left(y-z\right)^2\)

\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)