K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

`d)\sqrt{2+\sqrt{2+\sqrt{x}}}=2`       `ĐK: x >= 0`

`=>2+\sqrt{2+\sqrt{x}}=4`

`=>\sqrt{2+\sqrt{x}}=2`

`=>2+\sqrt{x}=4`

`=>\sqrt{x}=2`

`=>x=4` (t/m)

Vậy `x=4`

24 tháng 5 2022

d) Điều kiện: \(x\ge0\)

\(\sqrt{2+\sqrt{2+\sqrt{x}}}=2\Rightarrow2+\sqrt{2+\sqrt{x}}=4\)

\(\Rightarrow\sqrt{2+\sqrt{x}}=2\Rightarrow2+\sqrt{x}=4\)

\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(TM\right)\)

d: Xét ΔABC có

BK,CH là đường cao

BK cắt CH tại I

=>I là trực tâm

=>AI vuông góc BC

mà HF vuông góc BC

nên AI//HF
e: Xét ΔABC cân tại A có góc BAC=60 độ

nên ΔABC đều

Xét ΔABC đều có I là trực tâm

nên I là tâm đường tròn ngoại tiếp ΔABC

=>IA=IB=IC

Bài 19:

a: \(A=5x+\dfrac{1}{9}y=5\cdot\dfrac{-1}{10}+\dfrac{1}{9}\cdot4.8=\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{-15+16}{30}=\dfrac{1}{30}\)

b: \(A=x-\dfrac{2}{3}=\dfrac{-1}{3}-\dfrac{2}{3}=-1\)

\(a,7x-2x-\dfrac{2}{3}y+\dfrac{7}{9}y=5x+\dfrac{1}{9}y\\ =5.\left(\dfrac{-1}{10}\right)+\dfrac{1}{9}.4,8\\ =\dfrac{-1}{2}+\dfrac{8}{15}=\dfrac{1}{30}\\ b,x=\dfrac{0,2-0,375+\dfrac{5}{11}}{-0,3+\dfrac{9}{16}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{-7}{40}+\dfrac{5}{11}}{\dfrac{21}{80}-\dfrac{15}{22}}\\ =\dfrac{-1}{3}+\dfrac{\dfrac{123}{440}}{\dfrac{-369}{880}}=\dfrac{-1}{3}+\dfrac{-2}{3}=\dfrac{-3}{3}=\left(-1\right)\)

a: góc ABC=90 độ-góc ACB

góc KHC=90 độ-góc ACB

=>góc ABC=góc KHC

b: Xét ΔBAH vuông tại A và ΔBKH vuông tại K có

BH chung

góc ABH=góc KBH

=>ΔBAH=ΔBKH

=>BA=BK và HA=HK

=>BH là trung trực của AK

c: Xét ΔIBC có

BD,CA là đường cao

BD căt CAt tại H

=>H là trực tâm

=>I,H,K thẳng hàng

d: ΔADK đều

=>góc ADH=30 độ

=>góc AIK=30 độ

=>góc ABC=60 độ

31 tháng 5 2023

Cam on ban nhieu

20 tháng 12 2021

d: Xét ΔABK và ΔCKB có 

AB=CK

KB chung

AK=CB

Do đó: ΔABK=ΔCKB

20 tháng 12 2021

Em cảm ơn ạ!!
 

Bài 4: 

a) Xét ΔABE và ΔHBE có 

BA=BH(gt)

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

BE chung

Do đó: ΔABE=ΔHBE(c-g-c)

b) Ta có: ΔABE=ΔHBE(cmt)

nên EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(gt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

c) Ta có: ΔABE=ΔHBE(cmt)

nên \(\widehat{BAE}=\widehat{BHE}\)(hai góc tương ứng)

mà \(\widehat{BAE}=90^0\)(gt)

nên \(\widehat{BHE}=90^0\)

Xét ΔBKC có 

KH là đường cao ứng với cạnh BC

CA là đường cao ứng với cạnh BK

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H có EC là cạnh huyền)

nên EA<EC

28 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a-3b}{2\cdot5-3\cdot2}=\dfrac{12}{4}=3\)

Do đó: a=15; b=6

28 tháng 10 2021

d) Áp dụng t/c dtsbn:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a}{10}=\dfrac{3b}{6}=\dfrac{2a-3b}{10-6}=\dfrac{12}{4}=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=3.5=15\\b=3.2=6\end{matrix}\right.\)

f) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=-\dfrac{z}{2}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{-z}{2}=\dfrac{x+y-z}{5+3+2}=\dfrac{2}{10}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}.5=1\\y=\dfrac{1}{5}.3=\dfrac{3}{5}\\z=\dfrac{1}{5}.\left(-2\right)=-\dfrac{2}{5}\end{matrix}\right.\)

g) \(\dfrac{x}{4}=\dfrac{y}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

\(\Rightarrow xy=20k^2=500\Rightarrow k=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\\\left\{{}\begin{matrix}x=-20\\y=-25\end{matrix}\right.\end{matrix}\right.\)

Bài 5:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)

Do đó: a=30; b=40; c=50

2 tháng 10 2021

\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân.tại.A\right)\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\\AD.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta ADC\left(ch-gn\right)\)

\(b,\)Áp dụng định lí Py-ta-go cho tam giác ABD vuông tại D

\(AD^2=AB^2-BD^2=36\\ \Rightarrow AD=6\left(cm\right)\)

\(c,\) Vì tam giác BAC cân tại A nên đường cao AD cũng là trung tuyến

Mà G là trọng tâm nên \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot6=4\left(cm\right)\)

2 tháng 10 2021

câu c mình ko đọc thấy sorry nhé