Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Xét \(\Delta\)MAB và \(\Delta\)MDC có :
- MA = MD ( giả thiết )
- Góc AMB = Góc DMC ( đối đỉnh )
- BM = MC ( vì M là trung điểm BC )
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MDC ( c - g - c )
\(\Rightarrow\)AB = CD ( 2 cạnh tương ứng )
b ) Xét \(\Delta\)ABC và \(\Delta\)DCB có :
- AB = CD ( chứng minh trên )
- BC : cạnh chung
- Góc ABC = Góc DCB ( \(\Delta\)MAB = \(\Delta\)MDC )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DCB ( c - g - c )
\(\Rightarrow\)BÂC = Góc CDB = 90° ( 2 góc tương ứng )
c ) Xét \(\Delta\)BAE có : BH là đường cao, đồng thời cũng là trung tuyến.
\(\Rightarrow\)\(\Delta\)BAE cân tại B
\(\Rightarrow\)AB = BE
Mà AB = CD ( chứng minh trên )
\(\Rightarrow\)BE = CD
c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.
Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC
Xét tam giác DMB và tam giác CMA
Có: CM=MB ( M trugn điểm)
DM=AM ( gt)
^DMB=^CMA (đđ)
Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^
B suy tiếp nhé!
Bạn tự vẽ hình nha!
Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)
\(225=81+AC^2\)
\(\Rightarrow AC^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
Xét tam giác MAB và tam giác MDC:
Có: DM=AM (gt)
CM=MB (AM trung tuyến)
Góc DMC=Góc AMB (đđ)
Vậy tam giác MAB= tam giác MDC (C.G.C)
a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
b: XétΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
a: AC=căn 5^2-3^2=4cm
b: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD
c: AB+BC=CD+BC>DB=2BM(ĐPCM)
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)
\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)
Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)
\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)
Mà ME là trung tuyến nên cũng là đường cao
Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)
Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)
Vậy M,E,F thẳng hàng
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
câu a: xét 2 tam giác MAB vs MCD :
ta có : AM = DM (gt)
góc BMA = góc DMC ( đối đỉnh)
MB = MC (gt)
=> tam giác MAB = tam giác MDC (c.g.c)
câu b: ta có : AC > AB
AB = CD ( 2 cạnh tương ứng)
=> AC > CD ( tính chất bắt cầu )
câu c: xét 2 tam giác ABK va ADK
ta có : AB = DC ( như câu a)
KA = KC ( gt )
=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )
câu d : xét 2 tam giác NAK và ICK
ta có : AK = KC ( gt )
góc NAK = góc ICK (Vì :
*1: có góc A = góc C ( vuông )
*2:góc BAN = DCI ( như câu a)
từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK
=> góc NAK = góc ICK )
góc DKC = góc BKA ( như câu c )
=> tam giác NAK = tam giác ICK ( g.c.g )
=> NK = NI ( 2 cạnh tương ứng )
=> tam giác NKI cân tại K ( vì có NK = IK) .
Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi
d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.
a)
Sửa đề: Chứng minh ΔMAB=ΔMCD và \(\widehat{MCD}=90^0\)
Xét ΔMAB và ΔMCD có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔMAB=ΔMCD(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MCD}=90^0\)(đpcm)
b) Xét ΔDMA và ΔBMC có
DM=BM(gt)
\(\widehat{DMA}=\widehat{BMC}\)(hai góc đối đỉnh)
MA=MC(M là trung điểm của AC)
Do đó: ΔDMA=ΔBMC(c-g-c)
Suy ra: \(\widehat{ADM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{ADM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c)
Ta có: MB=MD(gt)
mà D,M,B thẳng hàng(gt)
nên M là trung điểm của BD
Xét ΔMAB vuông tại A và ΔMAK vuông tại A có
MA chung
AB=AK(gt)
Do đó: ΔMAB=ΔMAK(hai cạnh góc vuông)
Suy ra: MB=MK(hai cạnh tương ứng)
mà \(BD=2\cdot MB\)(M là trung điểm của BD)
nên \(BD=2\cdot MK\)(đpcm)
cảm ơn bn nhiều