K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(cos20^0=sin70^0\)

\(cos55^0=sin35^0\)

\(\)Lại có:\(sin\alpha< tan\alpha\)

=> \(sin35^0< sin38^0< sin70^0< sin88^0< tan48^0\)

=> \(cos55^0< sin38^0< cos20^0< sin88^0< tan48^0\)

25 tháng 6 2021

7)Đk \(x\le2\)

Pt \(\Leftrightarrow x^2-x+8=4-2x\)

\(\Leftrightarrow x^2+x+4=0\)

\(\Delta=-15< 0\) => vô nghiệm

Vậy pt vô nghiệm

10) \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) (đk: \(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x+1\right).9}-\dfrac{4\sqrt{x+1}}{\sqrt{4}}=5\)

\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=5\) \(\Leftrightarrow x=24\) (tm)

Vậy \(S=\left\{24\right\}\)

Bài 7:

1: \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
2: P<1

=>P-1<0

=>\(\dfrac{1}{\sqrt{x}-2}-1< 0\)

=>\(\dfrac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)

=>\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}>0\)

TH1: \(\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>3\\\sqrt{x}>2\end{matrix}\right.\)

=>\(\sqrt{x}>3\)

=>x>9

TH2: \(\left\{{}\begin{matrix}\sqrt{x}-3< 0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< 3\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< =x< 4\\x\ne1\end{matrix}\right.\)

26 tháng 5 2021

Gọi x là chiều cao của tam giác ; y là cạnh đáy của tam giác (x,y > 0 )

* chiều cao  bằng 3/4 đáy:

   x = 3/4y
=> x - 3/4y = 0 (1)

* Nếu chiều cao tăng thêm...tăng thêm 9m^2:
1/2(y-2)(x+3) = 1/2xy + 9 (sau đó bạn tự giải phương trình nha) (2)
Từ (1),(2) suy ra chiều cao là 12m , cạnh đáy là 16m

26 tháng 5 2021

Bạn giải giúp mình cái hpt luôn đk, mình giải hoài k ra

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

NV
13 tháng 9 2021

a. Hàm là hàm bậc nhất khi: \(m-1\ne0\Rightarrow m\ne1\)

b.ĐHTS song song đường thẳng đã cho khi:

 \(\left\{{}\begin{matrix}m-1=-3\\m+3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\m\ne-2\end{matrix}\right.\) 

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. ĐTHS qua B khi:

\(2\left(m-1\right)+m+3=3\Rightarrow3m=2\Rightarrow m=\dfrac{2}{3}\)

9 tháng 12 2021

08:43 :vvvv

9 tháng 12 2021

BTVN :))