Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(I_1=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)cosxdx=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)d\left(sinx\right)\)
Đặt \(sinx=t\Rightarrow t\in\left[0;1\right]\Rightarrow f\left(t\right)=5-t\)
\(I_1=2\int\limits^1_0\left(5-t\right)dt=9\)
Xết \(I_2=3\int\limits^1_0f\left(3-2x\right)dx=-\dfrac{3}{2}\int\limits^1_0f\left(3-2x\right)d\left(3-2x\right)\)
Đặt \(3-2x=t\Rightarrow t\in\left[1;3\right]\Rightarrow f\left(t\right)=t^2+3\)
\(I_2=-\dfrac{3}{2}\int\limits^1_3\left(t^2+3\right)dt=\dfrac{3}{2}\int\limits^3_1\left(t^2+3\right)dt=22\)
\(\Rightarrow I=9+22=31\)
\(\left\{{}\begin{matrix}A'B'\perp AA'\\A'B'\perp A'C'\end{matrix}\right.\) \(\Rightarrow A'B'\perp\left(ACC'A'\right)\)
\(\Rightarrow\widehat{B'CA'}\) là góc giữa \(B'C\) và (ACC'A') \(\Rightarrow sin\widehat{B'CA'}=\dfrac{A'B'}{B'C}=\dfrac{1}{2\sqrt{5}}\)
Mặt khác:
\(CC'||AA'\Rightarrow CC'||\left(ABB'A'\right)\Rightarrow d\left(A'B;CC'\right)=d\left(CC';\left(ABB'A'\right)\right)=d\left(C;\left(ABB'A'\right)\right)=AC\)
\(\Rightarrow AC=a\sqrt{3}\Rightarrow AB=AC.tan30^0=a\)
\(\Rightarrow B'C=2\sqrt{5}A'B'=2a\sqrt{5}\) ; \(BC=\dfrac{AB}{sin30^0}=2a\)
\(\Rightarrow BB'=\sqrt{B'C^2-BC^2}=4a\)
\(V=\dfrac{1}{2}AB.AC.BB'=2a^3\sqrt{3}\)
Từ S kẻ \(SH\perp AC\) (1)
Ta có: \(\left\{{}\begin{matrix}SB\perp SA\\SB\perp SC\end{matrix}\right.\) \(\Rightarrow SB\perp\left(SAC\right)\Rightarrow SB\perp AC\) (2)
(1);(2) \(\Rightarrow AC\perp\left(SBH\right)\)
Trong mp (SBH), từ S kẻ \(SK\perp BH\Rightarrow SK\perp\left(ABC\right)\)
\(\Rightarrow SK=d\left(S;\left(ABC\right)\right)\)
\(\dfrac{1}{SH^2}=\dfrac{1}{SA^2}+\dfrac{1}{SC^2}\Rightarrow SH=\dfrac{SA.AC}{\sqrt{SA^2+SC^2}}=\dfrac{a\sqrt{3}}{2}\)
\(\dfrac{1}{SK^2}=\dfrac{1}{SB^2}+\dfrac{1}{SH^2}\Rightarrow SK=\dfrac{SB.SH}{\sqrt{SB^2+SH^2}}=\dfrac{a\sqrt{66}}{11}\)
\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\) (1)
Trong mp đáy, kẻ \(AH\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(SAH\right)\)
Trong mp (SAH), kẻ \(AK\perp SH\Rightarrow AK\perp\left(SBC\right)\)
Hệ thức lượng tam giác vuông ABC: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)
Hệ thức lượng tam giác vuông SAH:
\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}\Rightarrow AK=\dfrac{AH.SA}{\sqrt{AH^2+SA^2}}=\dfrac{2a\sqrt[]{57}}{19}\)
Không ai vẽ hình khi làm bài mặt cầu Oxyz đâu bạn, chỉ cần đại số hóa nó là được.
Gọi I là tâm mặt cầu, do mặt cầu tiếp xúc (Q) tại H nên \(IH\perp\left(Q\right)\)
\(\Rightarrow\) Đường thẳng IH nhận vtpt của (Q) là 1 vtcp
\(\Rightarrow\) IH nhận (1;1;-1) là 1 vtcp
Phương trình IH: \(\left\{{}\begin{matrix}x=1+t\\y=-1+t\\z=-t\end{matrix}\right.\)
I vừa thuộc IH vừa thuộc (P) nên là giao điểm của IH và (P)
\(\Rightarrow\) Tọa độ I thỏa mãn:
\(2\left(1+t\right)+\left(-1+t\right)+\left(-t\right)-3=0\)
\(\Rightarrow t=1\Rightarrow I\left(2;0;-1\right)\)
\(\Rightarrow\overrightarrow{IH}=\left(-1;-1;1\right)\Rightarrow R=IH=\sqrt{3}\)
Phương trình (S):
\(\left(x-2\right)^2+y^2+\left(z+1\right)^2=3\)
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
Lời giải:
\(y'=\frac{1-m}{(x+1)^2}\)
Nếu $m=1$ thì $y=1$ với mọi $x\neq -1$ (loại)
Nếu $m> 1$ thì hàm số nghịch biến trên TXĐ
$\Rightarrow$ với $x\in [0;1]$ thì:
$y_{\min}=y(1)=\frac{m+1}{2}=3$
$\Leftrightarrow m=5$
Nếu $m<1$ thì hàm số đồng biến trên TXĐ
$\Rightarrow$ với $x\in [0;1]$ thì:
$y_{\min}=y(0)=\frac{0+m}{0+1}=3\Leftrightarrow m=3$ (vô lý do $m< 1$)
Vậy $m=5$. Nghĩa là đáp án D đúng.