K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Câu 3:

+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)

\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)

Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)

+)Sử dụng phương pháp tọa độ hóa

Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az

\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)

\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)

Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau

\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)

22 tháng 11 2016

Câu 5:

Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')

Từ I kẻ IH vuông góc với AA' tại H

suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'

Tính được IA=a và IA'=\(a\sqrt{3}\)

Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:

\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)

 

NV
14 tháng 3 2022

43.

ĐKXĐ: \(\left\{{}\begin{matrix}6-x>0\\log_2\left(6-x\right)\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 6\\6-x\ge4\end{matrix}\right.\) \(\Rightarrow x\le2\)

C là đáp án đúng

44.

Phương trình mặt cầu:

\(x^2+\left(y-1\right)^2+\left(z+1\right)^2=4\)

C là đáp án đúng

NV
14 tháng 3 2022

41.

\(log_{\dfrac{1}{2}}\left(x^2-3x+2\right)\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+2>0\\x^2-3x+2\le2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\\0\le x\le3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\0\le x< 1\end{matrix}\right.\)

A là đáp án đúng

 

NV
30 tháng 3 2021

\(\int cos^3xdx=\int cos^2x.cosxdx=\int\left(1-sin^2x\right)d\left(sinx\right)\)

\(=sinx-\dfrac{1}{3}sin^3x+C\)

 

19 tháng 6 2016

txđ D=R

y'=-3x2+6x+3m 

y' là tam thức bậc 2 nên y'=0 có tối đa 2 nghiệm 

để hs nb/(0;\(+\infty\) ) thì y' \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )

\(\Leftrightarrow\) -3x2 +6x+3m \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )

\(\Leftrightarrow\) m\(\le\) x-2x với mọi x \(\in\) (0; \(+\infty\) ) 

xét hs g(x)=x-2x

g'(X) =2x-2

g'(x)=0 \(\Leftrightarrow\) x=1

 vậy m \(\le\) -1 

20 tháng 6 2016

Tại sao lại xét  g'(x)  ạ ?

13 tháng 1 2022

quần gì rộng nhất là quần đảo 

kiến gì ko bao giờ ngủ là kiến thức

13 tháng 1 2022

quần đảo rộng nhất còn kiến ko bao giờ ngủ là kiến thức

NV
7 tháng 9 2021

a.

\(y'=4x^3-4x=4x\left(x^2-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

Dấu y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

b.

\(y'=x^2+6x-7=0\Rightarrow\left[{}\begin{matrix}x=-7\\x=1\\\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;-7\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-7;1\right)\)

7 tháng 9 2021

cô ơi giúp em bài này đc k cô

2 tháng 2 2022

Các con số 3, 6, 9 gắn liền với cuộc đời của thiên tài Nikola Tesla vì ông cho rằng chúng là chìa khóa giải mã bí mật vũ trụ. ... Tất cả các thiết kế của ông - khoảng 300 trong số đó được cấp bằng sáng chế - đều hướng tới tương lai và đó là lý do mọi người gọi ông là "nhà phát minh ra thế kỷ 20".

đây là mình tham khảo mạng nhé, chứ bn có bổ sung thì bn tự bổ sung nha

2 tháng 2 2022

hay đó nhưng chx đủ thuyết phục.

NV
22 tháng 6 2021

84.

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) đồng thời SB là hình chiếu vuông góc của SC lên (SAB)

\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)

\(\Rightarrow\widehat{BSC}=30^0\)

\(\Rightarrow SB=\dfrac{BC}{tan30^0}=a\sqrt{3}\)

\(\Rightarrow SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)

\(V=\dfrac{1}{3}SA.BC^2=\dfrac{a^3\sqrt{2}}{3}\)

NV
22 tháng 6 2021

87.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác cân)

Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Lại có BC là giao tuyến (SBC) và (ABC)

\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)

\(\Rightarrow\widehat{SMA}=60^0\)

\(AM=\sqrt{AB^2-BM^2}=\sqrt{4a^2-\left(\dfrac{3a}{2}\right)^2}=\dfrac{a\sqrt{7}}{2}\)

\(SA=AM.tan60^0=\dfrac{a\sqrt{21}}{2}\)

\(V=\dfrac{1}{3}SA.\dfrac{1}{2}.AM.BC=\dfrac{7a^3\sqrt{3}}{8}\)

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Lời giải:

\(\lim\limits_{x\to 2-}y=\lim\limits_{x\to 2-}\frac{\sqrt{4-x^2}}{(x-2)(x-3)}=\lim\limits_{x\to 2-}\frac{\sqrt{2+x}}{\sqrt{2-x}(x-3)}=-\infty \) nên $x=2$ là TCĐ 

Vì \(x\in [-2;2)\) nên không tồn tại \(\lim\limits_{x\to +\infty }y\) nên đths không có TCN 

Còn $x=3$ không thể là TCĐ vì tại $x=3$ thì $\sqrt{4-x^2}$ không tồn tại .

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Đáp án A