Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(18^3< 32^3< 32^9\)
\(\Rightarrow18^3< 32^9\Rightarrow\left(-18\right)^3>\left(-32\right)^9\)
Để so sánh hai số này, chúng ta có thể tính giá trị của mỗi số và so sánh kết quả.
Đầu tiên, tính giá trị của (-32)^9:
(-32)^9 = -134217728
Tiếp theo, tính giá trị của (-18)^3:
(-18)^3 = -5832
Kết quả là (-32)^9 = -134217728 lớn hơn (-18)^3 = -5832.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a-3b}{2\cdot5-3\cdot2}=\dfrac{12}{4}=3\)
Do đó: a=15; b=6
d) Áp dụng t/c dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a}{10}=\dfrac{3b}{6}=\dfrac{2a-3b}{10-6}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.5=15\\b=3.2=6\end{matrix}\right.\)
f) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=-\dfrac{z}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{-z}{2}=\dfrac{x+y-z}{5+3+2}=\dfrac{2}{10}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}.5=1\\y=\dfrac{1}{5}.3=\dfrac{3}{5}\\z=\dfrac{1}{5}.\left(-2\right)=-\dfrac{2}{5}\end{matrix}\right.\)
g) \(\dfrac{x}{4}=\dfrac{y}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=20k^2=500\Rightarrow k=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\\\left\{{}\begin{matrix}x=-20\\y=-25\end{matrix}\right.\end{matrix}\right.\)
Ta có:
\(9\cdot10^n+18\)
\(=9\left(10^n+2\right)\)
Ta có: \(10\equiv1\)(mod 3)
Do đó: \(9\cdot10^n+18=9\left(10^n+2\right)\equiv9\cdot\left(1+2\right)=27\)(mod 3)
Suy ra: \(9\cdot10^n+18\equiv0\)(mod 27)
Vậy..........
Bài 5:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\)
Do đó: a=30; b=40; c=50
\(-\dfrac{4}{3}\cdot x=\dfrac{2}{3}:\dfrac{7}{12}:\dfrac{4}{18}\)
\(\Rightarrow-\dfrac{4}{3}\cdot x=\dfrac{36}{7}\)
\(\Rightarrow x=\dfrac{\dfrac{36}{7}}{-\dfrac{4}{3}}=-\dfrac{27}{7}\)
-\(\dfrac{4}{3}\).\(x\) = \(\dfrac{2}{3}\): \(\dfrac{7}{12}\):\(\dfrac{4}{18}\)
-\(\dfrac{4}{3}.x\) = \(\dfrac{2}{3}\times\)\(\dfrac{12}{7}\)\(\times\)\(\dfrac{18}{4}\)
-\(\dfrac{4}{3}.\)\(x\)= \(\dfrac{36}{7}\)
\(x\) = \(\dfrac{36}{7}\):(-\(\dfrac{4}{3}\))
\(x\) = - \(\dfrac{27}{7}\)
6:
a: \(\Leftrightarrow\dfrac{\sqrt{4}-\sqrt{1}}{4-1}+\dfrac{\sqrt{7}-\sqrt{4}}{7-4}+...+\dfrac{\sqrt{3n+4}-\sqrt{3n+1}}{3}=8\)
=>\(-\sqrt{1}+\sqrt{4}-\sqrt{4}+\sqrt{7}-...-\sqrt{3n+1}+\sqrt{3n+4}=24\)
=>\(\sqrt{3n+4}=24+1=25\)
=>3n+4=625
=>3n=621
=>n=207
b: \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\cdot\sqrt{n+1}}=\dfrac{4}{5}\)
=>\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)
=>\(1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)
=>n+1=25
=>n=24
d: Xét ΔABC có
BK,CH là đường cao
BK cắt CH tại I
=>I là trực tâm
=>AI vuông góc BC
mà HF vuông góc BC
nên AI//HF
e: Xét ΔABC cân tại A có góc BAC=60 độ
nên ΔABC đều
Xét ΔABC đều có I là trực tâm
nên I là tâm đường tròn ngoại tiếp ΔABC
=>IA=IB=IC
18.A
A