K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2021

Nhìn đề bài và đáp án thì rõ ràng đề bài bị in sai

Cả 4 đáp án đều có dạng hàm dưới nguyên hàm là \(\dfrac{1}{sin^2\dfrac{x}{2}}\)

Trong khi đề bài lại là \(\dfrac{1}{sin\dfrac{x^2}{2}}\) (đúng thế này thì ko tính được nguyên hàm)

Kết luận: đề in ẩu, lỗi của người đánh máy

NV
30 tháng 6 2021

Làm biếng tính tích có hướng nên biến đổi đại số thuần túy:

Gọi \(M\left(x;y;z\right)\) là điểm bất kì thuộc đường thẳng cần tìm

\(\Rightarrow MA=MB=MC\)

\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{MA}\right|=\left|\overrightarrow{MB}\right|\\\left|\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2+\left(z+1\right)^2=\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2\\\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\2x+y-z-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\5y+z-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=-3\left(y-1\right)\\5\left(y-1\right)=-\left(z-5\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-3}{3}=\dfrac{y-1}{-1}\\\dfrac{y-1}{-1}=\dfrac{z-5}{5}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x-3}{3}=\dfrac{y-1}{-1}=\dfrac{z-5}{5}\)

30 tháng 6 2021

tối nay mn đông đủ quá :P

NV
17 tháng 9 2021

Đặt \(\overrightarrow{d}=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{a}.\overrightarrow{d}=x+y-2z\\\overrightarrow{b}.\overrightarrow{d}=2x-y+2z\\\overrightarrow{c}.\overrightarrow{d}=-2x+3y-2z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-2z=4\\2x-y+2z=5\\-2x+3y-2z=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{d}=\left(3;6;\dfrac{5}{2}\right)\)

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

26 tháng 12 2021

16:C

NV
21 tháng 9 2021

21.

\(\left\{{}\begin{matrix}SA\perp AB\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAC\right)\)

E là trung điểm SA, F là trung điểm SB \(\Rightarrow\) EF là đường trung bình tam giác SAB

\(\Rightarrow EF||AB\Rightarrow EF\perp\left(SAC\right)\)

\(\Rightarrow EF=d\left(F;\left(SEK\right)\right)\)

\(SE=\dfrac{1}{2}SA=\dfrac{3a}{2}\) ; \(EF=\dfrac{1}{2}AB=a\)

 \(SC=\sqrt{SA^2+AC^2}=a\sqrt{13}\Rightarrow SK=\dfrac{2}{3}SC=\dfrac{2a\sqrt{13}}{3}\)

\(\Rightarrow S_{SEK}=\dfrac{1}{2}SE.SK.sin\widehat{ASC}=\dfrac{1}{2}.\dfrac{3a}{2}.\dfrac{2a\sqrt{13}}{3}.\dfrac{2a}{a\sqrt{13}}=a^2\)

\(\Rightarrow V_{S.EFK}=\dfrac{1}{3}EF.S_{SEK}=\dfrac{1}{3}.a.a^2=\dfrac{a^3}{3}\)

\(AB\perp\left(SAC\right)\Rightarrow AB\perp\left(SEK\right)\Rightarrow AB=d\left(B;\left(SEK\right)\right)\)

\(\Rightarrow V_{S.EBK}=\dfrac{1}{3}AB.S_{SEK}=\dfrac{1}{3}.2a.a^2=\dfrac{2a^3}{3}\)

NV
21 tháng 9 2021

22.

Gọi D là trung điểm AB

Do tam giác ABC đều \(\Rightarrow CD\perp AB\Rightarrow CD\perp\left(SAB\right)\)

\(\Rightarrow CD=d\left(C;\left(SAB\right)\right)\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

N là trung điểm SC \(\Rightarrow d\left(N;\left(SAB\right)\right)=\dfrac{1}{2}d\left(C;\left(SAB\right)\right)=\dfrac{a\sqrt{3}}{2}\)

\(S_{SAB}=\dfrac{1}{2}SA.AB=a^2\sqrt{3}\) \(\Rightarrow S_{SAM}=\dfrac{1}{2}S_{SAB}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{SAMN}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.\dfrac{a^2\sqrt{3}}{2}=\dfrac{a^3}{4}\)

Lại có:

\(V_{SABC}=\dfrac{1}{3}SA.S_{ABC}=\dfrac{1}{3}.a\sqrt{3}.\dfrac{\left(2a\right)^2\sqrt{3}}{4}=a^3\)

\(\Rightarrow V_{A.BCMN}=V_{SABC}-V_{SANM}=\dfrac{3a^3}{4}\)

NV
20 tháng 9 2021

Đặt \(f\left(x\right)=\dfrac{1}{3}x^3-x^2+mx+1\Rightarrow f'\left(x\right)=x^2-2x+m\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}x^2-2x+m\ge0;\forall x\ge1\\f\left(1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m+\dfrac{1}{3}\ge0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

27 tháng 5 2021

Bạn thử đặt t = 2x xong đổi biến, đổi biến xong rồi thì nguyên hàm từng phần u = t ; dv = f'(t)dt thử ra không 

27 tháng 5 2021

bài này mình nghĩ sai đáp án , phải ra 17/3 chứ nhỉ Không có mô tả.

Chọn C

NV
14 tháng 3 2022

ĐKXĐ: \(x< 2\)

\(m\sqrt{2-x}=\dfrac{x^2-2mx+2}{\sqrt{2-x}}\Rightarrow m\left(2-x\right)=x^2-2mx+2\)

\(\Leftrightarrow x^2+2=m\left(x+2\right)\Rightarrow m=\dfrac{x^2+2}{x+2}\)

Xét hàm \(f\left(x\right)=\dfrac{x^2+2}{x+2}\) với \(0< x< 2\)

\(f'\left(x\right)=\dfrac{2x\left(x+2\right)-\left(x^2+2\right)}{\left(x+2\right)^2}=\dfrac{x^2+4x-2}{\left(x+2\right)^2}=0\Rightarrow x=-2+\sqrt{6}\)

\(f\left(0\right)=1;f\left(2\right)=\dfrac{3}{2};f\left(-2+\sqrt{6}\right)=-4+2\sqrt{6}\)

\(\Rightarrow-4+2\sqrt{6}\le m< \dfrac{3}{2}\)

\(\Rightarrow m=1\)

Có đúng 1 giá trị nguyên m thỏa mãn