Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{x+2}+\dfrac{6x}{x^2-4}=\dfrac{x+1}{2-x}\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{x-1}{x+2}+\dfrac{6x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{x+1}{x-2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)+6x+\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-2x-x+2+6x+x^2+2x+x+2=0\)
\(\Leftrightarrow2x^2+6x+4=0\)
\(\Leftrightarrow2x^2+2x+4x+4=0\)
\(\Leftrightarrow2x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+4=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-1\right\}\)
14:
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: NP=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
13:
a: 3x+5=x-5
=>2x=-10
=>x=-5
b: (x-2)(2x+5)=0
=>x-2=0 hoặc 2x+5=0
=>x=2 hoặc x=-5/2
c: =>2(5x-2)=3(3x+1)
=>10x-4=9x+3
=>x=7
d: =>(3x+6-x+1)/(x+2)(x-1)=17-3x/(x+2)(x-1)
=>2x+7=17-3x
=>5x=10
=>x=2
Câu 4:
Xét tam giác ABC có
D là trung điểm của AC(gt)
E là trung điểm của BC(gt)
=> DE là đường trung bình của tam giác ABC
\(\Rightarrow AB=2DE=2.15=30\left(m\right)\)
Câu 5:
Xét hình thang ABCD có:
E là trung điểm của AD(gt)
F là trung điểm của BC(gt)
=> EF là đường trung bình của hình thang ABCD
\(\Rightarrow EF=\dfrac{AB+CD}{2}\Rightarrow45=\dfrac{32+x}{2}\Rightarrow x=45.2-32=58\left(cm\right)\)
Câu 6:
Xét hình thang AMEC có:
B là trung điểm AC(AB=BC)
BN//CE//AM( cùng vuông góc AD)
=> N là trung điểm ME
=> ME=2.MN=70(cm)
Xét hình thang BNFD có:
C là trung điểm BD(BC=CD)
CE//BN//DF(cùng vuông góc AD)
=> E là trung điểm NF
=> EF=EN=MN=35cm
Ta có: MF = EF+ME=70+35=105(cm)
Câu 5:
Hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: \(EF=\dfrac{AB+CD}{2}\)
\(\Leftrightarrow x+32=90\)
hay x=58cm
3:
a: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
góc EAH chung
=>ΔAEH đồng dạng với ΔADC
=>AE/AD=AH/AC
=>AE*AC=AH*AD
b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
góc C chung
=>ΔCEB đồng dạng với ΔCDA
=>CE/CD=CB/CA
=>CE*CA=CD*CB
c: S ABC=1/2*BC*AD=9cm2
-Gọi x (đồng) là giá niêm yết của chai nước rửa tay sát khuẩn (x>0).
a là số chai nước rửa tay nhiều nhất có thể mua đc sau khi khuyến mãi
(a là số tự nhiên khác 0).
-Số tiền An mang theo là: \(9x\left(đồng\right)\)
-Giá tiền của chai nước rửa tay sát khuẩn sau khi khuyến mãi là:
\(\left[x.\left(100\%-20\%\right)\right]=\dfrac{4}{5}x\left(đồng\right)\)
-Từ đề bài ta có BĐT sau:
\(9x\ge x+a.\dfrac{4}{5}x\).
\(\Leftrightarrow9x-x-a.\dfrac{4}{5}x\ge0\)
\(\Leftrightarrow\left(8-\dfrac{4}{5}a\right)x\ge0\)
Vì \(x>0\) nên BĐT đã cho tương đương:
\(8-\dfrac{4}{5}a\ge0\)
\(\Leftrightarrow a\le10\).
Mà a là số chai nước rửa tay nhiều nhất có thể mua đc sau khi khuyến mãi.
\(\Rightarrow a=10\)
-Vậy bạn An có thể mua được 10 chai nước theo chương trình khuyến mãi trên.
e: \(\dfrac{x^2+3x+9}{x^3+4x^2+4x}\cdot\dfrac{x^2+2x}{x^3-27x}\)
\(=\dfrac{x^2+3x+9}{x\left(x^2+4x+4\right)}\cdot\dfrac{x\left(x+2\right)}{x\left(x^2-27\right)}\)
\(=\dfrac{x^2+3x+9}{\left(x+2\right)^2}\cdot\dfrac{x+2}{x\left(x^2-27\right)}\)
\(=\dfrac{\left(x^2+3x+9\right)}{\left(x+2\right)\cdot x\left(x^2-27\right)}\)
f: \(\dfrac{2x^2+4xy+2y^2}{5x-5y}\cdot\dfrac{15x-15y}{2x^3+2y^3}\)
\(=\dfrac{2\left(x^2+2xy+y^2\right)}{5\left(x-y\right)}\cdot\dfrac{15\left(x-y\right)}{2\left(x^3+y^3\right)}\)
\(=\dfrac{\left(x+y\right)^2}{1}\cdot\dfrac{3}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{3\left(x+y\right)}{x^2-xy+y^2}\)
g: \(\dfrac{x^3-4x}{x^2-7x+12}\cdot\dfrac{x-4}{x^2-2x}\)
\(=\dfrac{x\left(x^2-4\right)}{\left(x-3\right)\left(x-4\right)}\cdot\dfrac{x-4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+2}{x-3}\)
a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=4\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=4\)
\(\Leftrightarrow45x=-5\)
hay \(x=-\dfrac{1}{9}\)
b: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\)
hay x=-1
14: \(=\dfrac{4x+7+1}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\)