K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Câu 1:

\(a,B=\dfrac{2\cdot3-1}{9-4}=\dfrac{5}{5}=1\\ b,A=\dfrac{x-2\sqrt{x}+x+2\sqrt{x}-2x+\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ b,\dfrac{A}{B}=\dfrac{\sqrt{x}+5}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}-1}=\dfrac{\sqrt{x}+5}{2\sqrt{x}-1}< 0\\ \Leftrightarrow2\sqrt{x}-1< 0\left(\sqrt{x}+5>0\right)\\ \Leftrightarrow\sqrt{x}< \dfrac{1}{2}\Leftrightarrow0\le x< \dfrac{1}{4}\)

1 a) Với \(a\ge0\) và \(a\ne4\) ta có 
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{2-\sqrt{x}}-\dfrac{2x-2\sqrt{x}-5}{x-4},B=\dfrac{2\sqrt{x}-1}{x-4}\) 

a)

A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}}{-\left(\sqrt{x}-2\right)}-\dfrac{2x-2\sqrt{x}-5}{x-4}\)
A=\(\dfrac{\sqrt{x}+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2x-2\sqrt{x}-5}{x-4}\)
A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}-\dfrac{2x-2\sqrt{x}-5}{x-4}\)
A=\(\dfrac{x-2\sqrt{x}+x+2\sqrt{x}}{x-4}-\dfrac{2x-2\sqrt{x}-5}{x-4}\)=\(\dfrac{2x}{x-4}-\dfrac{2x-2\sqrt{x}-5}{x-4}\)=\(\dfrac{2x-2x+2\sqrt{x}+5}{x-4}\)
A=\(\dfrac{2\sqrt{x}+5}{x-4}\)

Gía Trị Của B Khi x=9 Là ;

B=\(\dfrac{2\sqrt{9}-1}{9-4}=\dfrac{6-1}{5}=\dfrac{5}{5}=1\)

:)) câu c ko chắc :V
để \(\dfrac{A}{B}< 0\)(=)\(\dfrac{2\sqrt{x}+5}{x-4}:\dfrac{2\sqrt{x}-1}{x-4}\left(=\right)\dfrac{2\sqrt{x}+4}{x-4}\cdot\dfrac{x-4}{2\sqrt[]{x}-1}\left(=\right)\dfrac{\left(2\sqrt{x}+4\right)\left(x-4\right)}{\left(x-4\right)\left(2\sqrt{x}-1\right)}\)(=)\(\dfrac{2\sqrt{x}+4}{2\sqrt{x}-1}\)<0(=) bí :V

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

1.

Do $a>1$ nên $a-1>0; 2a+1>0$. Khi đó

$A=\sqrt{(a-1)^2(2a+1)^2}=\sqrt{(a-1)^2}.\sqrt{(2a+1)^2}$
$=|a-1|.|2a+1|=(a-1)(2a+1)$

2.

$B=\sqrt{(b-1)(b+7)+16}=\sqrt{b^2+6b-7+16}=\sqrt{b^2+6b+9}$

$=\sqrt{(b+3)^2}=|b+3|=-(b+3)$ do $b+3<0$ với mọi $b< -3$

Bài 3:

Ta có: ΔMNK vuông tại M

nên \(\widehat{N}+\widehat{K}=90^0\)

hay \(\widehat{K}=30^0\)

Xét ΔMNK vuông tại M có

\(NK=\dfrac{MN}{\dfrac{1}{2}}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNK vuông tại M, ta được:

\(NK^2=MK^2+MN^2\)

\(\Leftrightarrow MK^2=300\)

hay \(MK=10\sqrt{3}\left(cm\right)\)

Bài 2:

a: =>2x+3=3+2căn 2

=>2x=2 căn 2

=>x=căn 2

b: =>2 căn x-1+căn x-1=15

=>3 căn x-1=15

=>x-1=25

=>x=26

c: =>|x-4|=2x+7

TH1: x>=4

=>2x+7=x-4

=>x=-11(loại)

TH2: x<4

=>2x+7=4-x

=>3x=-3

=>x=-1(nhận)

Câu 1: D

Câu 2: C

Câu 3: C

Câu 4: D

Câu 5: A

14 tháng 5 2022

 1: D

 2: C

 3: C

 4: D

 5: A

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

28 tháng 10 2021

1: Ta có: \(\sqrt{3x-5}=2\)

\(\Leftrightarrow3x-5=4\)

hay x=3

2: Ta có: \(\sqrt{25\left(x-1\right)}=20\)

\(\Leftrightarrow x-1=16\)

hay x=17

6 tháng 5 2022

2.c

\(x+\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow x+\left|2x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2x-1=5;x\ge\dfrac{1}{2}\\x+1-2x=5;x< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=6\\-x=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{2;-4\right\}\)

19 tháng 8 2023

giúp mình câu c câu d với