K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 7 2021

Bài này chỉ cần kiên nhẫn, mà mình hơi thiếu kiên nhẫn nên hướng dẫn thôi nghe:

Từ giả thiết hàm đạt max tại \(x=-1\Rightarrow x=-1\) là 1 điểm cực đại

\(\Rightarrow\left\{{}\begin{matrix}f'\left(-1\right)=0\\f''\left(-1\right)< 0\end{matrix}\right.\)

\(f'\left(-1\right)=0\Rightarrow6a-b+2=0\Leftrightarrow b=6a+2\)

Thế vào hàm ban đầu:

\(f\left(x\right)=a\left(x-1\right)^2\left(x^2+4x+5\right)\)

Tới đây tính \(f''\left(-1\right)=-4a< 0\Rightarrow a>0\)

Từ đó hoành độ min, max của f(x) hoàn toàn giống với hoành độ min, max của \(g\left(x\right)=\left(x-1\right)^2\left(x^2+4x+5\right)\)

Đạo hàm, giải phương trình, tính giá trị tại mút và cực trị => min, max

NV
12 tháng 7 2021

8.

Hàm có 1 điểm cực đại \(\left(x=-1\right)\)

9. 

Hàm có 1 điểm cực tiểu (\(x=-1\))

14.

\(y'=\dfrac{2x\left(x+1\right)-\left(x^2+3\right)}{\left(x+1\right)^2}=\dfrac{x^2+2x-3}{\left(x+1\right)^2}\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Xét dấu y' trên trục số:

undefined

Từ dấu của y' ta thấy \(x=1\) là điểm cực tiểu

\(\Rightarrow y_{CT}=y\left(1\right)=2\)

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn

NV
18 tháng 5 2021

Gọi R là bán kính (C) \(\Rightarrow2\pi R=12\pi\Rightarrow R=6\)

Gọi \(J\) là tâm (C) \(\Rightarrow IJ\perp\left(P\right)\Rightarrow IJ=d\left(I;\left(P\right)\right)\)

\(d\left(I;\left(P\right)\right)=\dfrac{\left|2.\left(-2\right)-1.1+2.3-10\right|}{\sqrt{2^2+\left(-1\right)^2+2^2}}=3\)

\(\Rightarrow IJ=3\)

Áp dụng định lý Pitago:

\(r^2=IJ^2+R^2=45\Rightarrow r=3\sqrt{5}\)

​Đường tròn (C)(C) có bán kính R = 6R=6.

d(I,(P))=3. 

Mặt cầu  (S) cắt mặt phẳng (P) theo một đường tròn 

(C)(C) nên có bán kính: 

r=\(\sqrt{R^2+(d(I,(P)))^2 } =3\sqrt{5} \)(P(P) theo một đường tròn (C)(C) nên có bán kính:(S)(S) cắt mặt phẳng (P)
 

NV
21 tháng 9 2021

31.

\(y'=\dfrac{1+m}{\left(x+1\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(\dfrac{1+m}{\left(x+1\right)^2}>0\Rightarrow m>-1\) (C)

32.

\(y'=\dfrac{4-m^2}{\left(x+4\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(4-m^2>0\Rightarrow-2< m< 2\)

\(\Rightarrow m=\left\{-1;0;1\right\}\)

Có 3 giá trị nguyên của m

NV
21 tháng 9 2021

33.

\(y'=\dfrac{m-1}{\left(x+1\right)^2}\)

Hàm đồng biến trên từng khoảng xác định khi:

\(m-1>0\Rightarrow m>1\)

34.

\(y'=\dfrac{2m-1}{\left(x+2m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}2m-1>0\\-2m>-3\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< m< \dfrac{3}{2}\)

\(\Rightarrow m=1\)

Có 1 giá trị nguyên của m

12 tháng 3 2022

tui ne2

25 tháng 12 2017

\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)

=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)

=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)

=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)

=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)

19 tháng 8 2017

Mk ms lớp 8 mừ.

5 tháng 9 2017

Mọi người giúp mình với ai tả lời mình sẽ cho 1 likekhocroi

6 tháng 9 2017

Đây chỉ là toán lớp 6 nang cao thôi ko phải lớp 12

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít