K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 6 2021

Để phương trình có hai nghiệm \(x_1,x_2\)thì 

\(\Delta=9-4\left(m-1\right)=13-4m>0\Leftrightarrow m< \frac{13}{4}\).

Khi phương trình có hai nghiệm \(x_1,x_2\), theo định lí Viet: 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)

\(\Leftrightarrow x_1^5+32x_2^5-\left(x_1+x_2+3\right)=0\)

\(\Leftrightarrow x_1^5=-32x_2^5\)

\(\Leftrightarrow x_1=-2x_2\)

Thế vào \(x_1+x_2=-3\)ta được \(-2x_2+x_2=-3\Leftrightarrow x_2=3\Rightarrow x_1=-6\).

\(x_1x_2=m-1\Leftrightarrow3.\left(-6\right)=m-1\Leftrightarrow m=-17\)(thỏa mãn). 

1 tháng 3 2022

Đặt\(\begin{cases} x+y=S \\ xy=P \end{cases}\)

Ta có:\(\begin{cases} S-2P=0 \\ S-P^2=\sqrt{(P-1)^2+1} \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} S=2P \\ 2P-P^2=\sqrt{(P-1)^2+1} \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} S=2P \\ (2P-P^2)^2=(P-1)^2+1 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} S=2P \\ 4P^2-4P^3+P^4=P^2-2P+2 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} S=2P \\ P^4-4P^3+3P^2+2P-2=0 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} S =2+2\sqrt{3}\\ P=1+\sqrt{3} \end{cases}\)(1)hoặc\(\begin{cases} S=2 \\ P=1 \end{cases}\)(2)hoặc\(\begin{cases} S=2-2 \sqrt{3}\\ P=1-\sqrt{3} \end{cases}\)(3)

Còn lại là thay vào biểu thức x2-Sx+P=0 thôi

\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)

=9-8m-4=-8m+5

Để phương trình có nghiệm kép thì -8m+5=0

hay m=5/8

Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)

hay x=3/2

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

7 tháng 7 2021

Bài 2 :

a, Ta có đồ thị :

b, Ta có : \(\tan a=3\)

\(\Rightarrow a\approx71,5^o\)

6 tháng 12 2021

KO BIẾT LÀM NHA BẠN!!!!!!!!!!!!!!!!

27 tháng 11 2021

\(M\left(2;6\right)\in y=ax+5\Leftrightarrow6=a\cdot2+5\Rightarrow a=\dfrac{1}{2}\)

27 tháng 11 2021

thay x=1 y=6 vào công thức hs ta được:
a+5=6<=>a=1
 

30 tháng 9 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow x^2=5^2\Rightarrow x=5\left(cm\right)\)

\(AB^2=BH.BC\)

\(\Rightarrow AB=\sqrt{BH.BC}=\sqrt{5.\left(5+5\right)}\)

\(\Rightarrow y=5\sqrt{2}\left(cm\right)\)

30 tháng 9 2021

Cảm ơn bạn!

8 tháng 10 2021

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{2}\sqrt{4-\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)

8 tháng 10 2021

Mình cảm ơn bạn nhìu nha.

26 tháng 7 2023

\(a,C=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-8\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dk:x>0,x\ne4,x\ne64\right)\)

\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-8\right)}{\sqrt{x}\left(\sqrt{x}-8\right)}\right)\)

\(=\dfrac{8\sqrt{x}-4x+8x}{4-x}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{\sqrt{x}-1-2\sqrt{x}+16}\)

\(=\dfrac{8\sqrt{x}+4x}{4-x}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{-\sqrt{x}+15}\)

\(=\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{15-\sqrt{x}}\)

\(=\dfrac{4x\left(\sqrt{x}-8\right)}{ \left(2-\sqrt{x}\right)\left(15-\sqrt{x}\right)}\\ =\dfrac{4x\sqrt{x}-32x}{30-2\sqrt{x}-15\sqrt{x}+x}\\ =\dfrac{4x\sqrt{x}-32}{x-17\sqrt{x}+30}\)

\(b,C=-1\Leftrightarrow\dfrac{4x\sqrt{x}-32}{x-17\sqrt{x}+30}=-1\\ \Leftrightarrow4x\sqrt{x}-32+x-17\sqrt{x}+30=0\)

\(\Leftrightarrow4x\sqrt{x}-17\sqrt{x}+x-2=0\\ \Leftrightarrow x=4\left(ktmdk\right)\)

Vậy không có giá trị x thỏa mãn đề bài.