Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Tam giác ABC vuông tại A có:
ABC + ACB = 900
ABC + 400 = 900
ABC = 900 - 400
ABC = 500
Xét tam giác ABD và tam giác EBD có:
AB = EB (gt)
ABD = EBD (BD là tia phân giác của ABE)
BD chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
Xét tam giác AKB và tam giác BDA có:
KAB = DBA (2 góc so le trong, AK // BD)
AB chung
ABK = BAD (= 900)
=> Tam giác AKB = Tam giác BDA (g.c.g)
=> AK = BD (2 cạnh tương ứng)
BAD = BED (Tam giác ABD = Tam giác EBD)
mà BAD = 900 (tam giác ABC vuông tại A)
=> BED = 900
=> DE _I_ BC
Tam giác FBC có: CA là đường cao (CA _I_ BF)
BH là đường cao (BH _I_ FC)
mà CA cắt BH tại D
=> D là trực tâm của tam giác FBC
=> FD là đường cao của tam giác FBC
=> FD _I_ BC
mà ED _I_ BC (chứng minh trên)
=> \(FD\equiv ED\)
=> E, D, F thẳng hàng
hình tự kẻ nha
a, XÉT \(\Delta BDC\), có I , M là TĐ của CD , BC
\(\Rightarrow\)IM là đường trung bình của tg BDC
\(\Rightarrow\)IM = 1/2 BD (t/c đg trung bình )
Xét tg CDE có N là TĐ của DE
I là TĐ của CD
\(\Rightarrow\)NI là đường trung bình của tg CDE
\(\Rightarrow\)NI = 1/2 CE (t/c đg trung bình )
Ta có BD = CE (gt)
NI=1/2 CE
MI = 1/2BD
\(\Rightarrow\)NI = MI
\(\Rightarrow\Delta NIM\)cân tại I
b, Xét \(\Delta CBD\),có MI là đường trung bình
\(\Rightarrow\)MI // AB (t/c đường trung bình )
\(\Rightarrow\)\(\widehat{NMI}=\widehat{APQ}\)( so le trong) (1)
\(\Delta CDE\), có NI là đường trung bình
\(\Rightarrow\)NI // AC (t/c đường trung bình)
\(\Rightarrow\)\(\widehat{MNI}=\widehat{MQC}\)( đồng vị)
mà \(\widehat{MQC}=\widehat{AQP}\)(đối đỉnh )
\(\Rightarrow\widehat{MNI}=\widehat{AQP}\) (2)
\(\Delta MNI\)cân tại I \(\Rightarrow\widehat{INM}=\widehat{IMN}\) (3)
từ (1) , (2) và (3) \(\Rightarrow\widehat{APQ}=\widehat{AQP}\)
\(\Rightarrow\Delta APQ\) cân tại A
c, Gọi AD là tia p/g của góc BAC \(\Rightarrow2\widehat{DAC}=\widehat{BAC}\)( tính chất tia p/g) (*)
xét \(\Delta APQ\)có \(\widehat{BAC}=\widehat{APQ}+\widehat{AQP}\)(tính chất góc ngoài)
mà góc APQ = góc AQP suy ra góc BAC= \(\widehat{2AQP}\)(**)
từ (*) và (**) \(\Rightarrow\widehat{DAC}=\widehat{AQP}\)
Mà 2gocs trên lại ở vị trí so le trong của AD và PM
\(\Rightarrow AD//PM\)
\(\Rightarrow\) MN // vs tia p/g của góc A trong tg ABC
#mã mã#
a: Xét ΔEAB và ΔDAC có
AE=AD
AB=AC
EB=DC
Do đó: ΔEAB=ΔDAC
Suy ra: \(\widehat{EAB}=\widehat{DAC}\)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là đường phân giác
Sorry mình vẽ hình ko đc chính xác lắm :V
Giải:
a)Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta được:
\(BC^2=AC^2+AB^2\)
\(\Rightarrow AB^2=BC^2-AC^2=5^2-4^2\)
\(\Leftrightarrow AB^2=25-16=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(cm\right)\)
Theo đề, ta có: AB = AD => AD = 3 (cm)
Mà AB + AD = BD
\(\Leftrightarrow3+3=BD\)
\(\Rightarrow BD=6\left(cm\right)\)
Vậy AB = 3 (cm) ; BD = 6 (cm)
Xét trong \(\Delta ABC,có\):
AB < AC < BC ( 3 < 4 < 5 )
\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(quan hệ góc vs cạnh đối diện)
b) Xét 2 tam giác vuông ABC và ADC, có:
AB = AD (gt)
AC cạnh góc vuông chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(2.c.g.v\right)\)
\(\Rightarrow BC=DC\left(2.c.t.ứ\right)\)
\(\Rightarrow\Delta CBD\) cân tại C
c) Vì BC // DE (gt)
=> \(\widehat{BCD}=\widehat{CDE}\) (slt)
Xét 2 \(\Delta BMCvà\Delta EMD\), có:
\(\widehat{BMC}=\widehat{DME}\) (đ.đ)
DM = CM (vì M là TĐ DC)
\(\widehat{BCD}=\widehat{CDE}\) (cmt)
\(\Rightarrow\Delta BMC=\Delta EMD\left(g.c.g\right)\)
\(\Rightarrow BC=DE\left(2.c.t.ứ\right)\)
(cái phần còn lại của câu c mik chưa hỉu rõ đề hỏi gì, bạn xem lại nhé! Còn câu d mik đang suy nghĩ :v )
A B C D M E K 5 4
Giải:
a)Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta được:
BC2=AC2+AB2BC2=AC2+AB2
⇒AB2=BC2−AC2=52−42⇒AB2=BC2−AC2=52−42
⇔AB2=25−16=9⇔AB2=25−16=9
⇒AB=9–√=3(cm)⇒AB=9=3(cm)
Theo đề, ta có: AB = AD => AD = 3 (cm)
Mà AB + AD = BD
⇔3+3=BD⇔3+3=BD
⇒BD=6(cm)⇒BD=6(cm)
Vậy AB = 3 (cm) ; BD = 6 (cm)
Xét trong ΔABC,cóΔABC,có:
AB < AC < BC ( 3 < 4 < 5 )
⇒Cˆ<Bˆ<Aˆ⇒C^<B^<A^(quan hệ góc vs cạnh đối diện)
b) Xét 2 tam giác vuông ABC và ADC, có:
AB = AD (gt)
AC cạnh góc vuông chung
⇒ΔABC=ΔADC(2.c.g.v)⇒ΔABC=ΔADC(2.c.g.v)
⇒BC=DC(2.c.t.ứ)⇒BC=DC(2.c.t.ứ)
⇒ΔCBD⇒ΔCBD cân tại C
c) Vì BC // DE (gt)
=> BCDˆ=CDEˆBCD^=CDE^ (slt)
Xét 2 ΔBMCvàΔEMDΔBMCvàΔEMD, có:
BMCˆ=DMEˆBMC^=DME^ (đ.đ)
DM = CM (vì M là TĐ DC)
BCDˆ=CDEˆBCD^=CDE^ (cmt)
⇒ΔBMC=ΔEMD(g.c.g)⇒ΔBMC=ΔEMD(g.c.g)
⇒BC=DE(2.c.t.ứ)⇒BC=DE(2.c.t.ứ)