K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Sorry mình vẽ hình ko đc chính xác lắm :V

Giải:

a)Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta được:

\(BC^2=AC^2+AB^2\)

\(\Rightarrow AB^2=BC^2-AC^2=5^2-4^2\)

\(\Leftrightarrow AB^2=25-16=9\)

\(\Rightarrow AB=\sqrt{9}=3\left(cm\right)\)

Theo đề, ta có: AB = AD => AD = 3 (cm)

Mà AB + AD = BD

\(\Leftrightarrow3+3=BD\)

\(\Rightarrow BD=6\left(cm\right)\)

Vậy AB = 3 (cm) ; BD = 6 (cm)

Xét trong \(\Delta ABC,có\):

AB < AC < BC ( 3 < 4 < 5 )

\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)(quan hệ góc vs cạnh đối diện)

b) Xét 2 tam giác vuông ABC và ADC, có:

AB = AD (gt)

AC cạnh góc vuông chung

\(\Rightarrow\Delta ABC=\Delta ADC\left(2.c.g.v\right)\)

\(\Rightarrow BC=DC\left(2.c.t.ứ\right)\)

\(\Rightarrow\Delta CBD\) cân tại C

c) Vì BC // DE (gt)

=> \(\widehat{BCD}=\widehat{CDE}\) (slt)

Xét 2 \(\Delta BMCvà\Delta EMD\), có:

\(\widehat{BMC}=\widehat{DME}\) (đ.đ)

DM = CM (vì M là TĐ DC)

\(\widehat{BCD}=\widehat{CDE}\) (cmt)

\(\Rightarrow\Delta BMC=\Delta EMD\left(g.c.g\right)\)

\(\Rightarrow BC=DE\left(2.c.t.ứ\right)\)

(cái phần còn lại của câu c mik chưa hỉu rõ đề hỏi gì, bạn xem lại nhé! Còn câu d mik đang suy nghĩ :v )


A B C D M E K 5 4

18 tháng 1 2018

Giải:

a)Áp dụng định lý Pi-ta-go vào tam giác vuông ABC, ta được:

BC2=AC2+AB2BC2=AC2+AB2

AB2=BC2AC2=5242⇒AB2=BC2−AC2=52−42

AB2=2516=9⇔AB2=25−16=9

AB=9=3(cm)⇒AB=9=3(cm)

Theo đề, ta có: AB = AD => AD = 3 (cm)

Mà AB + AD = BD

3+3=BD⇔3+3=BD

BD=6(cm)⇒BD=6(cm)

Vậy AB = 3 (cm) ; BD = 6 (cm)

Xét trong ΔABC,cóΔABC,có:

AB < AC < BC ( 3 < 4 < 5 )

Cˆ<Bˆ<Aˆ⇒C^<B^<A^(quan hệ góc vs cạnh đối diện)

b) Xét 2 tam giác vuông ABC và ADC, có:

AB = AD (gt)

AC cạnh góc vuông chung

ΔABC=ΔADC(2.c.g.v)⇒ΔABC=ΔADC(2.c.g.v)

BC=DC(2.c.t.)⇒BC=DC(2.c.t.ứ)

ΔCBD⇒ΔCBD cân tại C

c) Vì BC // DE (gt)

=> BCDˆ=CDEˆBCD^=CDE^ (slt)

Xét 2 ΔBMCvàΔEMDΔBMCvàΔEMD, có:

BMCˆ=DMEˆBMC^=DME^ (đ.đ)

DM = CM (vì M là TĐ DC)

BCDˆ=CDEˆBCD^=CDE^ (cmt)

ΔBMC=ΔEMD(g.c.g)⇒ΔBMC=ΔEMD(g.c.g)

BC=DE(2.c.t.)⇒BC=DE(2.c.t.ứ)

 

 

 

 

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

d)chịu

19 tháng 4 2020

Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB

a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC

b, Chứng minh tam giác CBD cân

c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE

d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM

                                         Giải

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

26 tháng 12 2017

Cho tam giác ABC có các góc đều nhọn và AB < AC,Phân giác góc A cắt cạnh BC tại D,Vẽ BE vuông góc với AD tại E,Tia BE cắt cạnh AC tại F,Chứng minh AB = AF,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Chúc bạn học tốt !!!

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

2 tháng 12 2016

Tam giác ABC vuông tại A có:

ABC + ACB = 900

ABC + 400 = 900

ABC = 900 - 400

ABC = 500

Xét tam giác ABD và tam giác EBD có:

AB = EB (gt)

ABD = EBD (BD là tia phân giác của ABE)

BD chung

=> Tam giác ABD = Tam giác EBD (c.g.c)

Xét tam giác AKB và tam giác BDA có:

KAB = DBA (2 góc so le trong, AK // BD)

AB chung

ABK = BAD (= 900)

=> Tam giác AKB = Tam giác BDA (g.c.g)

=> AK = BD (2 cạnh tương ứng)

BAD = BED (Tam giác ABD = Tam giác EBD)

mà BAD = 900 (tam giác ABC vuông tại A)

=> BED = 900

=> DE _I_ BC

Tam giác FBC có: CA là đường cao (CA _I_ BF)

BH là đường cao (BH _I_ FC)

mà CA cắt BH tại D

=> D là trực tâm của tam giác FBC

=> FD là đường cao của tam giác FBC

=> FD _I_ BC

mà ED _I_ BC (chứng minh trên)

=> \(FD\equiv ED\)

=> E, D, F thẳng hàng

hình tự kẻ nha

a, XÉT  \(\Delta BDC\), có I  , M là TĐ của CD , BC 

\(\Rightarrow\)IM là đường trung bình của tg BDC

\(\Rightarrow\)IM = 1/2 BD   (t/c đg trung bình )

Xét tg CDE có N là TĐ của DE 

                        I là TĐ của  CD

\(\Rightarrow\)NI là đường trung bình của tg CDE

\(\Rightarrow\)NI = 1/2 CE (t/c đg trung bình )

Ta có BD = CE (gt)

       NI=1/2 CE

      MI = 1/2BD

\(\Rightarrow\)NI = MI 

\(\Rightarrow\Delta NIM\)cân tại I 

b, Xét \(\Delta CBD\),có MI là đường trung bình 

\(\Rightarrow\)MI // AB (t/c đường trung bình )

\(\Rightarrow\)\(\widehat{NMI}=\widehat{APQ}\)( so le trong)                (1)

\(\Delta CDE\), có NI là đường trung bình 

\(\Rightarrow\)NI // AC (t/c đường trung bình) 

\(\Rightarrow\)\(\widehat{MNI}=\widehat{MQC}\)( đồng vị)

mà \(\widehat{MQC}=\widehat{AQP}\)(đối đỉnh )

\(\Rightarrow\widehat{MNI}=\widehat{AQP}\)         (2)

\(\Delta MNI\)cân tại I \(\Rightarrow\widehat{INM}=\widehat{IMN}\)           (3) 

từ (1) , (2) và (3) \(\Rightarrow\widehat{APQ}=\widehat{AQP}\)

             \(\Rightarrow\Delta APQ\) cân tại A

c,  Gọi AD là tia p/g của góc BAC  \(\Rightarrow2\widehat{DAC}=\widehat{BAC}\)( tính chất tia p/g)      (*)

xét \(\Delta APQ\)có \(\widehat{BAC}=\widehat{APQ}+\widehat{AQP}\)(tính chất góc ngoài)

                                          mà góc APQ = góc AQP suy ra góc BAC= \(\widehat{2AQP}\)(**)

từ (*) và (**) \(\Rightarrow\widehat{DAC}=\widehat{AQP}\)

                       Mà 2gocs trên lại ở vị trí so le trong của AD và PM 

\(\Rightarrow AD//PM\)

\(\Rightarrow\) MN // vs tia p/g của góc A trong tg ABC

#mã mã#

a: Xét ΔEAB và ΔDAC có 

AE=AD

AB=AC

EB=DC

Do đó: ΔEAB=ΔDAC

Suy ra: \(\widehat{EAB}=\widehat{DAC}\)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là đường phân giác