Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)
\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)
\(2n-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)
\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)
Ta có : n + 6 chia hết cho n - 3
=> n - 3 + 9 chia hết cho n - 3
=> 9 chia hết cho n - 3
=> n - 3 thuộc Ư(9) = {-9;-3;-1;1;3;9}
=> n thuộc {-6;0;2;4;6;12}
n+6=(n-3)+9
n-3 chia het cho n-3
nen 6 chia het cho n-3
suy ra n-3 là UC của 6
Uc(6)= 1;2;3;6
*n-3=1
n=4
*n-3=2
n=5
*n-3=3
n=6
*n-3=6
n=9
vậy n= 4;5;6;9
a: =>n-1+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{2;0;6;-4\right\}\)
b: =>n^2+2n+1-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: =>3n-6+5 chiahết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1) \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}
b,Theo Bezout n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3 \(⋮\) n+1
\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}
c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -3; 1; 3; 7}
d, 3n + 1 \(⋮\) 2n - 1
\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1
\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1
\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 5 \(⋮\) 2n - 1
\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}
\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}
a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}
=> n= tự tìm
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}