K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

b, \(B=\frac{\frac{x}{x+3}-\frac{9}{x^2+6x+9}}{\frac{3}{x+3}}=\frac{\frac{x}{x+3}-\frac{3^2}{x^2+2\cdot3\cdot x+3^2}}{\frac{3}{x+3}}\)

\(=\frac{\frac{x}{x+3}-\left(\frac{3}{x+3}\right)^2}{\frac{3}{x+3}}=1-\frac{3}{x+3}\)

a, Vậy điều kiện là \(x\ne3\)

c, \(B=\frac{1}{3}\Leftrightarrow1-\frac{3}{x+3}=\frac{1}{3}\)

\(\Rightarrow\frac{3}{x+3}=\frac{2}{3}\Leftrightarrow x=\frac{3}{2}\)

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

3 tháng 1 2019

M = x4 - 6x3 + 10x2 - 6x + 9

M = (x2 - 6x + 9) + x4 - 6x3 + 9x2

M = (x - 3)2 + x2(x2 - 6x + 9)

M = (x - 3)2.(1 + x2)

Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)

\(\Rightarrow M\ge1\)

Dấu 'x' xảy ra khi:

\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Mmin = 1 khi x = 3

Chúc bạn học tốt!!!

4 tháng 1 2019

Mình giải lại từ dòng số 6 nhé!!!

=> M = 0 

Dấu '=' xảy ra khi:

(x - 3)2 = 0 => x - 3 = 0

=> x = 3

Vậy Mmin = 0 khi x = 3

2 tháng 1 2017

\(A=5+\frac{\left(x-2\right)^2}{x^2}\)

min\(A=5\), xảy ra tại \(x=2\)

2 tháng 1 2017

Điều kiện xác định của A là x khác 0.

A=\(\frac{6x^2-4x+4}{x^2}=\frac{5x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=5+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\)=> \(5+\frac{\left(x-2\right)^2}{x^2}\ge5\)=> \(A\ge5\)

Với A= 5 => \(5+\frac{\left(x-2\right)^2}{x^2}=5\)=> \(\frac{\left(x-2\right)^2}{x^2}=0\)=> \(\left(x-2\right)^2=0\)=> \(x-2=0\)=> \(x=2\)

Vậy GTNN của A là 5 đạt được tại x=2.

3 tháng 3 2017

\(D=\left(x^4-2x^3+x^2\right)+\left(2x^2-2x+1\right)\)

\(D=\left(x^2-x\right)^2+2\left(x^2-x\right)+1=\left(x^2-x+1\right)^2\)

\(D=\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]^2\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow D\ge\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)

đẳng thúc khi x=1/2

3 tháng 3 2017

{logic 10x-->10x^2}

\(E=x^4-6x^3+10x^2-6x+9\)

\(E=\left(x^4-3x+9x^2\right)+\left(x^2-6x+9\right)\)

\(E=\left(x^2-3x\right)^2+\left(x-3\right)^2=\left[x^2\left(x-3\right)^2\right]+\left(x-3\right)^2\)

\(E=\left(x-3\right)^2\left(x^2+1\right)\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(x^2+1\right)\ge1\end{matrix}\right.\) \(\Rightarrow E\ge0\) đẳng thức khi x=3