Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E N F K G H P
Trên tia đối của DC lấy điểm P sao cho BE=DP
Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP
Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900
Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450
Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)
=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)
=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH
Và ^BAE = ^HAE hay ^BAG = ^HAG
=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK
=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).
=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)
=> KG2 = DK2 + BG2 (đpcm).
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi
a. Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\) không đổi.
b. Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\) (ĐPCM)
cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m
BÁC NÀO BK CHỈ MK VS