K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

\(a,C=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-8\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dk:x>0,x\ne4,x\ne64\right)\)

\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-8\right)}{\sqrt{x}\left(\sqrt{x}-8\right)}\right)\)

\(=\dfrac{8\sqrt{x}-4x+8x}{4-x}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{\sqrt{x}-1-2\sqrt{x}+16}\)

\(=\dfrac{8\sqrt{x}+4x}{4-x}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{-\sqrt{x}+15}\)

\(=\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-8\right)}{15-\sqrt{x}}\)

\(=\dfrac{4x\left(\sqrt{x}-8\right)}{ \left(2-\sqrt{x}\right)\left(15-\sqrt{x}\right)}\\ =\dfrac{4x\sqrt{x}-32x}{30-2\sqrt{x}-15\sqrt{x}+x}\\ =\dfrac{4x\sqrt{x}-32}{x-17\sqrt{x}+30}\)

\(b,C=-1\Leftrightarrow\dfrac{4x\sqrt{x}-32}{x-17\sqrt{x}+30}=-1\\ \Leftrightarrow4x\sqrt{x}-32+x-17\sqrt{x}+30=0\)

\(\Leftrightarrow4x\sqrt{x}-17\sqrt{x}+x-2=0\\ \Leftrightarrow x=4\left(ktmdk\right)\)

Vậy không có giá trị x thỏa mãn đề bài.

 

26 tháng 9 2021

\(a,=2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{5}-1}\\ =2\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =2\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\\ =2\left(\sqrt{5}-1\right)^2=2\left(6-2\sqrt{5}\right)=12-4\sqrt{5}\\ b,=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)

 

29 tháng 10 2021

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt[]{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(=18+3\sqrt{81-80}.x=18+3x\)\(\Rightarrow x^3-3x=18\left(1\right)\)

\(y=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow y^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.y=6+3y\)\(\Rightarrow y^3-3y=6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow P=x^3+y^3-3\left(x+y\right)+1996=x^3-3x+y^3-3y+1996\)

\(=18+6+1996=2020\)

23 tháng 2 2022

Bạn đăng tách 2 bài ra cho mn cùng giúp nhé 

 

Câu 2: 

a: Thay m=-1 vào (1), ta được:

\(x^2-2x+2\cdot\left(-1\right)+3=0\)

=>x=1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(2m+3\right)=4m^2+16m+16-8m-12\)

\(=4m^2-4m+4=\left(2m-1\right)^2+3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-1< =0\)

\(\Leftrightarrow\left(2m+4\right)^2-2\left(2m-3\right)-1< =0\)

\(\Leftrightarrow4m^2+16m+16-4m+6-1< =0\)

\(\Leftrightarrow4m^2+12m+21< =0\)

\(\Leftrightarrow m\in\varnothing\)

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Bạn nên tách lẻ các bài ra post riêng. Đăng thế này chiếm diện tích, khó quan sát => mọi người dễ bỏ qua bài của bạn.

Xét ΔOHA vuông tại H và ΔOKA vuông tại K có

OA chung

OH=OK

Do đó: ΔOHA=ΔOKA

Suy ra: AH=AK

hay AB=AC

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

2:

a: =(1+căn 3)^2-5

=4+2căn 3-5

=2căn 3-1

b: \(=\sqrt{\dfrac{125}{7}\cdot\dfrac{35}{81}}=\sqrt{\dfrac{625}{81}}=\dfrac{25}{9}\)

c: \(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)-\sqrt{6}+\sqrt{2}\)

=2-căn 6+căn 2

3:

a: \(=\dfrac{2\sqrt{3}+3\sqrt{3}-\sqrt{3}}{\sqrt{3}}=2+3-1=5\)

b: \(=\dfrac{6\sqrt{2}+7\sqrt{2}-5\sqrt{2}}{\sqrt{2}}=13-5=8\)

c: \(=\dfrac{12-10+8}{2}=5\)

d: \(=\sqrt{\dfrac{1}{5}:5}-\sqrt{\dfrac{9}{5}:5}+\sqrt{5:5}\)

=1/5-3/5+1

=3/5

NV
10 tháng 7 2021

\(M=\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

2. Ta có: 

\(\sqrt{x}>0\Rightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+2}>0\) hay \(M>0\)

Lại có: \(M=\dfrac{\sqrt{x}+2-1}{\sqrt{x}+2}=1-\dfrac{1}{\sqrt{x}+2}< 1\)

\(\Rightarrow0< M< 1\Rightarrow M>M^2\)

1) Ta có: \(M=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)