Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{-2}{5}x^3.\left(2x-1\right)^m+\frac{2}{5}x^{m+3}\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left[\frac{2}{5}x^3\left(2x+1\right)^m+\frac{2}{5}x^3.\left(\frac{2}{5}\right)^m\right]:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[\left(2x+1\right)^m+\left(\frac{2}{5}\right)^m\right]\right\}:\left(\frac{-2}{5}x^3\right)\)
\(=\left\{\frac{2}{5}x^3.\left[2x+\frac{7}{5}\right]^m\right\}:\frac{-2}{5}x^3\)
\(=-\left(2x+\frac{7}{5}\right)^m\)
đến đây thì mình chịu
\(3-\frac{x}{5}-x=\frac{x}{x-1}\)
\(\Rightarrow\frac{15\left(x-1\right)}{5\left(x-1\right)}-\frac{x\left(x-1\right)}{5\left(x-1\right)}-\frac{5x\left(x-1\right)}{5\left(x-1\right)}=\frac{5x}{5\left(x-1\right)}\)
\(\Rightarrow15\left(x+1\right)-x\left(x-1\right)-5x\left(x-1\right)=5x\)
\(\Rightarrow15x+15-x^2+x-5x^2+5x=5x\)
Bạn tự làm tiếp theo ha
\(\frac{3-x}{5-x}=\frac{x}{x+1}\)
\(\left(3-x\right)\left(x+1\right)=\left(5-x\right)x\)
\(3\left(x+1\right)-x\left(x+1\right)=5x-x^2\)
\(3x+3-x^2-x=5x-x^2\)
\(2x+3-x^2=5x-x^2\)
\(2x+3=5x\)
\(3=5x-2x\)
\(3x=3\)
\(x=1\)
Vậy x = 1
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
\(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)
=\(1-\frac{1}{1.2}+1-\frac{1}{2.3}+...+1-\frac{1}{2015.2016}\)
=\(\left(1+1+...+1\right)+\left(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2015.2016}\right)\)
=\(2015+\left(-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2015}+\frac{1}{2016}\right)\)
=\(2015+\left(-\frac{1}{1}+\frac{1}{2016}\right)=2015+\left(\frac{-2016}{2016}+\frac{1}{2016}\right)\)
=\(2015+\frac{-2015}{2016}=\frac{4062240}{2016}+\frac{-2015}{2016}=\frac{4060225}{2016}\)