Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

MN//BD
=>d(N;BD)=d(M;BD)
\(S_{DBN}=\dfrac{1}{2}\cdot d\left(N;BD\right)\cdot BD;S_{DBM}=\dfrac{1}{2}\cdot d\left(M;BD\right)\cdot BD\)
=>\(S_{DBN}=S_{DBM}\)
mà \(S_{ABND}=S_{ADB}+S_{BDN}\)
nên \(S_{ABND}=S_{ADB}+S_{DBM}\)
\(=S_{AOD}+S_{ABO}+S_{OMD}+S_{OBM}\)
\(=S_{ADM}+S_{ABM}\)
\(=\dfrac{1}{2}\cdot\left(S_{ADC}+S_{ABC}\right)=\dfrac{1}{2}\cdot S_{ABCD}=8\left(cm^2\right)\)

a) Ta có: S hình thang ABCD là : \(\frac{\left(AB+CD\right)\cdot h}{2}=450\Rightarrow3CD\cdot h=900\Rightarrow h=\frac{900}{3CD}=\frac{300}{CD}\)
Mà hình thang ABCD và tam giác ABC có cùng đường cao hạ từ C
Nên diện tích tam giác ABC là: \(\frac{AB\cdot h}{2}=\frac{2CD\cdot h}{2}=\frac{2CD\cdot\frac{300}{CD}}{2}=300\left(cm^2\right)\)
b) hình tứ giác có diện tích nhỏ nhất là hình thang CMAN (vì CM=CD/2 và AN=AB/2)
Diện tích tứ giác đó là: \(\frac{\left(CM+AN\right)\cdot h}{2}=\frac{1,5CD\cdot\frac{300}{CD}}{2}=225\left(cm^2\right)\)
c)IM<IN (sr nha mình bận một chút)
có gì k cho mình nha


Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng
Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là 73,96 \(cm^2\)
Nhanh nheeeeee
-_-