Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔAED có
\(\dfrac{AB}{AE}=\dfrac{AC}{AD}\left(\dfrac{6}{2}=\dfrac{9}{3}=3\right)\)
\(\widehat{A}\) chung
Do đó: ΔABC~ΔAED
=>\(k=\dfrac{AB}{AE}=3\)
Xét tam giác \(ABE\) \(\&ADC\)
\(BAE=ADC\)(góc chung)
\(\frac{AB}{CD}=\frac{8}{10}=\frac{4}{5};\frac{AE}{AC}=\frac{12}{15}=\frac{4}{5}\)
\(\Rightarrow tamgiácABE~tamgiacADC\left(C.G.C\right)\)
b) Từ tam giác \(ABE\) \(~\)tam giác \(ADC\)\(\Rightarrow\frac{AB}{CD}=\frac{BE}{DC}\Rightarrow DC=\frac{AD\cdot BE}{AB}=\frac{10\cdot10}{8}=12,5\)
c) Từ tam giác \(ABE~\)tam giác \(ADC\left(cmt\right)\)
\(\Rightarrow\frac{S_{ABE}}{S_{ADC}}=\left(\frac{AB}{AD}\right)^2=\left(\frac{8}{10}\right)^2\left(\frac{4}{5}\right)^2=\frac{16}{25}\)
a, Xét \(\Delta AEF\) và \(\Delta ADC\) có:
\(\widehat{A}\) chung
\(\dfrac{AE}{AF}=\dfrac{3}{6}=\dfrac{1}{2};\dfrac{AD}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AD}{AC}\)
Vậy \(\Delta AEF\sim\Delta ADC\left(c.g.c\right)\)
b, Vì \(\Delta AEF\sim\Delta ADC\) (cmt) \(\Rightarrow\widehat{DFI}=\widehat{ECI}\)
Lại có \(\widehat{DIF}=\widehat{ECI}\left(gt\right)\) \(\Rightarrow\Delta DIF\sim\Delta EIC\left(g.g\right)\)
\(\Rightarrow\dfrac{S_{IDF}}{S_{IEC}}=\left(\dfrac{DF}{EC}\right)^2=\left(\dfrac{2}{5}\right)^2=\dfrac{4}{25}\)
-Chúc bạn học tốt-
a: Xét ΔAEF và ΔADC có
AE/AD=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔADC
b: Xét ΔDIF và ΔEIC có
góc IFD=góc ICE
góc DIF=góc CIE
=>ΔDIF đồng dạng với ΔEIC
=>\(\dfrac{S_{DIF}}{S_{EIC}}=\left(\dfrac{DF}{EC}\right)^2=4\)
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=8/5=1,6
=>BD=3,2cm; CD=4,8cm
b: Xét ΔDEB và ΔDCA có
góc DEB=góc DCA
góc EDB=góc CDA
=>ΔDEB đồng dạng với ΔDCA
Xét ΔABE và ΔADC có
góc AEB=góc ACD
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
c: ΔABE đồng dạng với ΔADC
=>AB/AD=AE/AC
=>AB*AC=AD*AE
d: góc ACB=góc AEB
=>ABEC nội tiếp
=>góc ABE+góc ACE=180 độ
nếu bạn muốn họ trả lời nhanh thì bạn tốt nhật ko nên bỏ chữ đâu nha
là sao bạn k hiểu