K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)

Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý

Giả sử x=0;x=1;x=-1 là 3 giá trị đó.

Ta có:f(0)=a.02+b.0+c=c

f(1)=a.12+b.1+c=a+b+c

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Do đó c=0;a+b+c=0;a-b+c=0

=>a-b=0=>a=b

và a+b=0=>a=b=0

Vậy a=b=c=0

6 tháng 2 2020

\(1,\text{Ta có: với a=1;b=-6;c=11 thì }P\left(x\right)=x^2-6x+11=\left(x-3\right)^2+2>0\Rightarrow\text{vô nghiệm}\)

\(2,\text{ với: x=3}\Rightarrow f\left(3\right)+5f\left(\frac{1}{3}\right)=27\)

\(với:x=\frac{1}{3}\text{ thì:}f\left(\frac{1}{3}\right)+5f\left(3\right)=\frac{1}{27}\)

\(\Rightarrow6\left(f\left(3\right)+f\left(\frac{1}{3}\right)\right)=\frac{730}{27}\Leftrightarrow f\left(3\right)+f\left(\frac{1}{3}\right)=\frac{365}{81}\Rightarrow4f\left(3\right)=\frac{-362}{81}\Rightarrow f\left(3\right)=\frac{-362}{324}\)

7 tháng 2 2020

shitbo ơi giải thihs hỗ 4f(3)

15 tháng 8 2015

a) f(0) = c; f(0) nguyên => c nguyên     (*)

f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)

f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)

Từ (*)(**)(***) => a + b và 4a + 2b nguyên

4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên

nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

b)  f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a 

Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên

f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a 

Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên

f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a 

Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên

26 tháng 2 2016

a=o

b=-1

c=4

chắc chắn

17 tháng 2 2020

giúp MK với đang cần gấp ai nhanh mình sẽ cho