Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính:
\(A=2^{2012}-\left(2^{2011}+2^{2010}+...+2+1\right)\)
Giúp mk nốt bài này nha mọi ng. Mk cần 23h
Ta có:
\(\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)
\(\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)
\(\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
\(x=-2012\)
Ta có : \(\frac{x+1}{2013}+\frac{x+2}{2012}+\frac{x+3}{2011}=-3.\)
\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=-3+3\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\ne0\) nên \(x+2014=0\Leftrightarrow x=-2014\)
Vây \(x=-2014\)
hừm
=chịu
= 2,3323...