
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.
1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)
Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh
Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)
=>\(a^2<>1\)
=>a∉{1;-1](1)
\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)
=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)
=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)
Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)
=>-2⋮a+1
=>a+1∈{1;-1;2;-2}
=>a∈{0;-2;1;-3}
Kết hợp (1), ta có: a∈{0;-2;-3}
Bài 3:
ĐKXĐ: x>=y
\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)
=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)
=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)
a, Ta có tam giác \(A B C\) nhọn, kẻ:
=> Các góc tại \(B\) và \(C\) đều là góc vuông.
Ta xét tứ giác \(A B D C\):
Suy ra:
\(\angle A B D + \angle A C D = 180^{\circ}\)
Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:
\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)
Mà \(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).
⇒ \(\Rightarrow \angle D + \angle A = 180^{\circ}\)
b, * Chứng minh \(Q J = B D\)
Vì \(I\) là trung điểm của \(P Q\) và \(B J\), nên:
Xét hai tam giác \(I P B\) và \(I Q J\):
⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)
Suy ra:
\(P B = Q J\)
Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)
⇒ \(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)
*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)
Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)
Ta sẽ chứng minh \(\angle A Q J = \angle A\)
Xét hai tam giác:
Do \(B D \bot A B\), \(C D \bot A C\) ⇒ \(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.
Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).
Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\) ⇒
\(\angle A Q J = \angle A .\)
Vậy:
\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)
a: \(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\)
\(=\frac{2}{\sqrt{xy}}+\frac{x+y}{xy}=\frac{x+y+2\sqrt{xy}}{xy}=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\)
\(\frac{\sqrt{x^3}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(=\frac{\left(x\cdot\sqrt{x}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+y\cdot\sqrt{y}\right)}{x\cdot\sqrt{xy}+y\cdot\sqrt{xy}}=\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(P=\left\lbrack\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right\rbrack:\left(\frac{\sqrt{x^3}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}:\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
nhu nay bn nhe a: \(\left(\right. \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \left.\right) \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{1}{x} + \frac{1}{y}\)
\(= \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}} \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{x + y}{x y}\)
\(= \frac{2}{\sqrt{x y}} + \frac{x + y}{x y} = \frac{x + y + 2 \sqrt{x y}}{x y} = \frac{\left(\left(\right. \sqrt{x} + \sqrt{y} \left.\right)\right)^{2}}{x y}\)
\(\frac{\sqrt{x^{3}} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + \sqrt{y^{3}}}{\sqrt{x^{3} y} + \sqrt{x y^{3}}}\)
\(= \frac{\left(\right. x \cdot \sqrt{x} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + y \cdot \sqrt{y} \left.\right)}{x \cdot \sqrt{x y} + y \cdot \sqrt{x y}} = \frac{\left(\right. x + y \left.\right) \left(\right. \sqrt{x} + \sqrt{y} \left.\right)}{\sqrt{x y} \left(\right. x + y \left.\right)} = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}}\)
\(P = \left[\right. \left(\right. \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \left.\right) \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{1}{x} + \frac{1}{y} \left]\right. : \left(\right. \frac{\sqrt{x^{3}} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + \sqrt{y^{3}}}{\sqrt{x^{3} y} + \sqrt{x y^{3}}} \left.\right)\)
\(= \frac{\left(\left(\right. \sqrt{x} + \sqrt{y} \left.\right)\right)^{2}}{x y} : \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}} = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}}\)
a) Rút gọn A rồi tìm \(x\) để \(A\) đạt GTNN
Nhận xét:
\(x^{2} - 8 x + 16 = \left(\right. x - 4 \left.\right)^{2} \Rightarrow \sqrt{x^{2} - 8 x + 16} = \mid x - 4 \mid = x - 4 \left(\right. v \overset{ˋ}{\imath} x > 4 \left.\right)\)
Xét biểu thức trong ngoặc:
\(\sqrt{x + 4 \sqrt{x - 4}} = \sqrt{\left(\right. \sqrt{x - 4} + 2 \left.\right)^{2}} , \sqrt{x - 4 \sqrt{x - 4}} = \sqrt{\left(\right. \sqrt{x - 4} - 2 \left.\right)^{2}}\)
⇒ Với \(x > 4\), ta có:
\(\sqrt{x + 4 \sqrt{x - 4}} = \sqrt{x - 4} + 2 , \sqrt{x - 4 \sqrt{x - 4}} = \mid \sqrt{x - 4} - 2 \mid = \sqrt{x - 4} - 2 \left(\right. v \overset{ˋ}{\imath} \sqrt{x - 4} > 2 \left.\right)\)
⇒ Tổng:
\(\sqrt{x + 4 \sqrt{x - 4}} + \sqrt{x - 4 \sqrt{x - 4}} = \left(\right. \sqrt{x - 4} + 2 \left.\right) + \left(\right. \sqrt{x - 4} - 2 \left.\right) = 2 \sqrt{x - 4}\)
Do đó:
\(A = \frac{x \cdot 2 \sqrt{x - 4}}{x - 4} = \frac{2 x \sqrt{x - 4}}{x - 4} = \frac{2 x}{\sqrt{x - 4}}\)
Xét hàm \(A \left(\right. x \left.\right) = \frac{2 x}{\sqrt{x - 4}} , \&\text{nbsp}; x > 4\)
Đặt \(t = \sqrt{x - 4} > 0 \Rightarrow x = t^{2} + 4\)
\(A = \frac{2 \left(\right. t^{2} + 4 \left.\right)}{t} = 2 t + \frac{8}{t}\)
Tìm GTNN của hàm \(f \left(\right. t \left.\right) = 2 t + \frac{8}{t} , \&\text{nbsp}; t > 0\)
Áp dụng BĐT AM-GM:
\(2 t + \frac{8}{t} \geq 2 \sqrt{2 t \cdot \frac{8}{t}} = 2 \sqrt{16} = 8\)
Dấu “=” xảy ra khi \(2t=\frac{8}{t}\Rightarrow t^2=4\Rightarrow t=2\Rightarrow x=t^2+4=8\)