Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XXét tứ giác AMDN có ^AMD=^MAN=^AND=90∞
⇒AMDN là hình chữ nhật
hcn AMDN có AD là phân giác góc A
⇒AMDN là hình vuông(dấu hiệu 3)
2: \(A=x^2-10x+25-34=\left(x-5\right)^2-34\ge-34\forall x\)
Dấu '=' xảu ra khi x=5
\(1,C=x^2+x-3\\ \Rightarrow C=\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{13}{4}\\ \Rightarrow C=\left(x+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)
dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(C_{min}=-\dfrac{13}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(2,A=x^2-10x-9\\ \Rightarrow A=\left(x^2-10x+25\right)-34\\ \Rightarrow A=\left(x-5\right)^2-34\)
dấu "=" xảy ra \(\Leftrightarrow x=5\)
Vậy \(A_{min}=-34\Leftrightarrow x=5\)
3: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)=27\)
\(\Leftrightarrow x^3-27-x^3+x=27\)
hay x=54
Bài `1`
\(a,A=a\left(a+b\right)-b\left(a+b\right)\\ =\left(a+b\right)\left(a-b\right)\)
Với `a=9;=10`
Ta có :
\(\left(a+b\right)\left(a-b\right)\\=\left(9+10\right)\left(9-10\right)\\ =19.\left(-1\right)\\ =-19\)
\(b,B=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x+2\right)\left(3x-2\right)\\ =\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\\ =\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\)
Với `x=-4`
Ta có :
\(\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\\ =\left(3.4+2-3.4+2\right)^2\\ =\left(12+2-12+2\right)^2\\ =4^2\\ =16\)
\(2,\\ x^3-6x^2+9x\\ =x\left(x^2-6x+9\right)\\ =x\left(x-3\right)^2\\ x^2-2x-4y^2-4y\\ \)
`->` có đúng đề ko cậu
2:
b; x^2-4y^2-2x-4y
=(x-2y)*(x+2y)-2(x+2y)
=(x+2y)(x-2y-2)
a: x^3-6x^2+9x
=x(x^2-6x+9)
=x(x-3)^2
Lời giải:
$A=11-5x-x^2=11-(x^2+5x)=17,25-(x^2+5x+2,5^2)=17,25-(x+2,5)^2$
Vì $(x+2,5)^2\geq 0$ với mọi $x$ nên $A=17,25-(x+2,5)^2\leq 17,25$
Vậy $A_{\max}=17,25$ khi $x+2,5=0\Leftrightarrow x=-2,5$
- Bài này phải có điều kiện \(x>0\) thì mới làm được nhé bạn.
À mình cảm ơn bạn nhá mình cũng vừa mới xem lại đề cô gửi thì mình thấy có điều kiện x>0 thật mình cảm ơn bạn nhiều nhá
a: Xét ΔOAD và ΔOCB có
OA/OC=3/6=OD/OB=2/4
góc AOD chung
Do đó:ΔOAD∼ΔOCB
b: Ta có: ΔOAD∼ΔOCB
=>OA/OC=AD/BC
=>1/2=4/BC
=>BC=8(cm)
A= 2006 X 2008 - 20072
A = 2006 . 2008 - 2007 . 2007
A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )
A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007
A = -1
B= 2016 X 2018 - 20172
B= 2016 . 2018 - 2017 . 2017
B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )
B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017
B = -1
\(x^2-4x-1=0\)
\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)
\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)
\(\Rightarrow x-2=\pm\sqrt{5}\)
Tự giải tiếp nha ...
9:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
\(P=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}=\dfrac{x-1}{2}\)
b: Khi x=2 thì \(P=\dfrac{2-1}{2}=\dfrac{1}{2}\)
c: \(S=P\cdot\dfrac{2}{x-2}=\dfrac{x-1}{2}\cdot\dfrac{2}{x-2}=\dfrac{x-1}{x-2}=\dfrac{x-2+1}{x-2}=1+\dfrac{1}{x-2}\)
Để S là số nguyên thì \(x-2\in\left\{1;-1\right\}\)
=>\(x\in\left\{3;1\right\}\)
mình cảm ơn ạ