Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này là mình giải tới đó. Rồi không biết phân tích thành nhân tử
\(C=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2+2y-2\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}+1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge\frac{-1}{2}\)
Đến đây dễ rồi
bài này tính ko dc, chỉ có rút gọn thôi :))
\(\dfrac{3sin\left(a\right)+3cos\left(a\right)}{1+2sin\left(a\right).cos\left(a\right)}=\dfrac{3\left(sin\left(a\right)+cos\left(a\right)\right)}{sin^2\left(a\right)+2sin\left(a\right).cos\left(a\right)+cos\left(a\right)}\\ =\dfrac{3\left(sin\left(a\right)+cos\left(a\right)\right)}{\left(sin\left(a\right)+cos\left(a\right)\right)^2}=\dfrac{3}{sin\left(a\right)+cos\left(a\right)}\)
p/s : \(sin^2\left(a\right)+cos^2\left(a\right)=1\) (t/c trong SGK)
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2
Bài 1:
Vì (d)//y=-2x+1 nên a=-2
Vậy: y=-2x+b
Thay x=1 và y=2 vào (d),ta được:
b-2=2
hay b=4
Câu 5:
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét tứ giác AEDF có
\(\widehat{EAF}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
2b)
Áp dụng BĐT bunhiacopxki có:
\(\left(1+1\right)\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\)
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4\right)\ge\dfrac{\left(x+y\right)^4}{4}\Leftrightarrow x^4+y^4\ge\dfrac{1}{8}.\left(x+y\right)^4\)
Dấu "=" xảy ra khi x=y
3)
Áp dụng bđt Holder có:
\(\left(x^3+y^3+z^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(x+y+z\right)^3\)
\(\Leftrightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\)
Dấu "=" xảy ra khi x=y=z
3)(Nếu không dùng Holder)
Với x,y,z >0, ta có bđt sau:\(2x^3+2y^3+2z^3\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\) (1)
Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)+\left(y+z\right)\left(y^2-yz+z^2\right)-yz\left(y+z\right)+\left(z+x\right)\left(z^2-zx+x^2\right)-zx\left(x+z\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2+\left(y+z\right)\left(y-z\right)^2+\left(z+x\right)\left(z-x\right)^2\ge0\) (lđ)
Áp dụng AM-GM có:
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow\dfrac{2\left(x^3+y^3+z^3\right)}{3}\ge2xyz\) (2)
Từ (1) và (2), cộng vế với vế \(\Rightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(x+z\right)+xz\left(x+z\right)+2xyz\)
\(\Leftrightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3\)
\(\Rightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\) (đpcm)
a) \(\dfrac{\sqrt{28y^6}}{\sqrt{7y^4}}=\sqrt{\dfrac{28y^6}{7y^4}}=\sqrt{4y^2}=\left|2y\right|=-2y\left(y< 0\right)\)
b) \(\sqrt{\dfrac{14a}{b}}.\sqrt{\dfrac{7ab^3}{2}}=\sqrt{\dfrac{14a}{b}.\dfrac{7ab^3}{2}}=\sqrt{49a^2b^2}=\left|7ab\right|\)
\(==7\left(-a\right)\left(-b\right)\left(a,b< 0\right)=7ab\)
c) \(\sqrt{\sqrt{x^4+4}-x^2}.\sqrt{\sqrt{x^4+4}+x^2}\)
\(=\sqrt{\left(\sqrt{x^4+4}-x^2\right)\left(\sqrt{x^4+4}+x^2\right)}\)
\(=\sqrt{x^4+4-\left(x^2\right)^2}=\sqrt{4}=2\)