Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, M(x)+N(x)=(3x^2+5x-x^3+4)+(x^3-5+4x^2+6x)`
`M(x)+N(x)= 3x^2+5x-x^3+4+x^3-5+4x^2+6x`
`M(x)+N(x)= (3x^2+4x^2)+(5x+6x)-(x^3-x^3)+(4-5)`
`M(x)+N(x)= 7x^2+11x-1`
`b, M(x)-N(x)=(3x^2+5x-x^3+4)-(x^3-5+4x^2+6x)`
`M(x)-N(x)= 3x^2+5x-x^3+4-x^3+5-4x^2-6x`
`M(x)-N(x)=(-x^3-x^3)+(3x^2-4x^2)+(5x-6x)-(x^3+x^3)+(4+5)`
`M(x)-N(x)= -2x^3-x^2-x+9`
Lời giải:
a.
$M(x)+N(x)=(3x^2+5x-x^3+4)+(x^3-5+4x^2+6x)$
$=3x^2+5x-x^3+4+x^3-5+4x^2+6x$
$=(-x^3+x^3)+(3x^2+4x^2)+(5x+6x)+(4-5)$
$=7x^2+11x-1$
b.
$M(x)-N(x)=(3x^2+5x-x^3+4)-(x^3-5+4x^2+6x)$
$=3x^2+5x-x^3+4-x^3+5-4x^2-6x$
$=(-x^3-x^3)+(3x^2-4x^2)+(5x-6x)+(4+5)$
$=-2x^3-x^2-x+9$
Vì /x-1,5/ \(\ge\)0 với V x
/2,5-x/\(\ge\)0 với V x
\(\Rightarrow\)Để /1,5-x/ + /2,5-x/ =0 thì \(\hept{\begin{cases}x-1,5=0\\2,5-x=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1,5\\x=-2,5\end{cases}}\)(vô lí)
Vậy không tồn tại giá trị nào thảo mãn đk x
\(|x+\frac{3}{4}|\ge0\Rightarrow\frac{1}{2}+|x+\frac{3}{4}|\ge\frac{1}{2}\).Vậy GTNN của A là\(\frac{1}{2}\)khi :
\(|x+\frac{3}{4}|=0\Rightarrow x+\frac{3}{4}=0\Rightarrow x=\frac{-3}{4}\)
- \(x^2\) + 5\(x\) - 4 = 0
-\(x^2\) + \(x\) + 4\(x\) - 4 = 0
(- \(x^2\) + \(x\)) + (4\(x\) - 4) = 0
-\(x\)(\(x-1\)) + 4\(\times\)( \(x\) -1) = 0
(\(x-1\))( -\(x\) +4) = 0
\(\left[{}\begin{matrix}x-1=0\\-x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(x\) \(\in\) { 1; 4}
`-x^2+5x-4 =0`
`\Rightarrow x^2-5x+4=0`
`\Rightarrow x^2-4x-x+4=0`
`\Rightarrow (x^2-4x)-(x-4)=0`
`\Rightarrow x(x-4)-(x-4)=0`
`\Rightarrow (x-4)(x-1)=0`
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\end{matrix}\right.\)
`\Rightarrow `\(\left[{}\begin{matrix}x=0+4\\x=0+1\end{matrix}\right.\)
``\Rightarrow `\(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={4; 1}.`
Vì P(x) có nghiệm bằng 2 nên:
P(2) = 0
=> m.2 + 3 = 0
2m = -3
m = \(\frac{-3}{2}\)
4:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hcn
=>ΔACD vuông tại C
b: Xét ΔKAB vuông tại A và ΔKCD vuông tại C có
KA=KC
AB=CD
=>ΔKAB=ΔKCD
=>KB=KD
c: Xét ΔACD có
DK,CM là trung tuyến
DK cắt CM tại I
=>I là trọng tâm
=>KI=1/3KD
Xét ΔCAB có
AM,BK là trung tuyến
AM cắt BK tại N
=>N là trọng tâm
=>KN=1/3KB=KI
a:ta có: \(2x^2\ge0\)
\(\Leftrightarrow2x^2+1>0\forall x\)
vậy: H(x) vô nghiệm
54.204/255.45=54.(5.4)4/(52)5.45=58.44/510.45=1/100
hk hiểu chỗ nào ns lại nhá
thanks