K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

\(1,\\ a,M=\sqrt{3}-1-6\sqrt{3}+\sqrt{3}+1=-4\sqrt{3}\\ b,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=1\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\\ \Leftrightarrow x-1=\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\\ 2,\\ a,ĐK:x>0;x\ne1\\ P=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P< 0\Leftrightarrow x-1< 0\left(\sqrt{x}>0\right)\\ \Leftrightarrow0< x< 1\\ c,P\sqrt{x}=m-\sqrt{x}\\ \Leftrightarrow x-1=m-\sqrt{x}\\ \Leftrightarrow x+\sqrt{x}-m-1=0\\ \text{PT có nghiệm nên }\Delta=1+4\left(m+1\right)\ge0\\ \Leftrightarrow4m+5\ge0\Leftrightarrow m\ge-\dfrac{5}{4}\)

24 tháng 7 2021

undefined

undefined

Bài 3:

a) Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

b) Ta có: M=B:A

\(=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}-5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\dfrac{x+3\sqrt{x}+\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\dfrac{x+4\sqrt{x}+5}{x+7\sqrt{x}+10}\)

10 tháng 10 2021

Bài 6:

a: \(\sqrt{\dfrac{2}{3-\sqrt{5}}}=\dfrac{\sqrt[4]{2}\cdot\left(\sqrt[2]{5}+1\right)}{2}\)

b: \(\sqrt{\dfrac{a-4}{2\left(\sqrt{a}-2\right)}}=\dfrac{\sqrt{2}\left(\sqrt{a}+2\right)}{2}\)

26 tháng 9 2021

\(a,=2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =2\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{4+\sqrt{5}-1}\\ =2\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =2\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\\ =2\left(\sqrt{5}-1\right)^2=2\left(6-2\sqrt{5}\right)=12-4\sqrt{5}\\ b,=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\\ =\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ =32-8\sqrt{15}+8\sqrt{15}-30=2\)

 

Bài 4: 

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

hay O,B,A,C cùng thuộc 1 đường tròn

4 tháng 11 2021

Bài 5:

\(\sqrt{x+2021}-y^3=\sqrt{y+2021}-x^3\\ \Leftrightarrow\left(\sqrt{x+2021}-\sqrt{y+2021}\right)+\left(x^3-y^3\right)=0\\ \Leftrightarrow\dfrac{x-y}{\sqrt{x+2021}+\sqrt{y+2021}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\\ \Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y=0\\\dfrac{1}{\sqrt{x+2021}+\sqrt{y+2021}}+x^2+xy+y^2=0\left(1\right)\end{matrix}\right.\)

Dễ thấy \(\left(1\right)>0\) với mọi x,y

Do đó \(x-y=0\) hay \(x=y\)

\(\Leftrightarrow M=x^2+2x^2-2x^2+2x+2022=x^2+2x+1+2021\\ \Leftrightarrow M=\left(x+1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=-1\)

9:

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-2m+4\right)\)

=4m^2-4m^2+8m-16=8m-16

Để phương trình có hai nghiệm phân biệt thì 8m-16>0

=>m>2

x1^2+x2^2=x1+x2+8

=>(x1+x2)^2-2x1x2-(x1+x2)=8

=>(2m)^2-2(m^2-2m+4)-2m=8

=>4m^2-2m^2+4m-8-2m=8

=>2m^2+2m-16=0

=>m^2+m-8=0

mà m>2

nên \(m=\dfrac{-1+\sqrt{33}}{2}\)

27 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐT NHAhihi