
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{ACD}=80^0+30^0=110^0\)
Ta có: \(\hat{DCB}+\hat{B}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: ta có: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

\(a.\frac12+\frac32x=\frac34\)
\(\frac32x=\frac34-\frac12=\frac14\)
\(x=\frac14:\frac32=\frac14\cdot\frac23=\frac16\)
\(b.2,5-2\cdot\left(x-0,5\right)=2\)
\(2\cdot\left(x-0,5\right)=2,5-2=0,5\)
\(x-0,5=0,5:2=0,25\)
\(x=0,25+0,5=0,75\)
\(c.\left(x+\frac32\right)^3=\frac{125}{8}=\left(\frac52\right)^3\)
\(x+\frac32=\frac52\)
\(x=\frac52-\frac32=\frac22=1\)
\(d.\left(x-\frac13\right)^2=\frac{25}{4}=\left(\pm\frac52\right)^2\)
\(\left[\begin{array}{l}x-\frac13=\frac52\Rightarrow x=\frac{17}{6}\\ x-\frac13=-\frac52\Rightarrow x=-\frac{13}{6}\end{array}\right.\)
vậy \(x\in\left\lbrace\frac{17}{6};-\frac{13}{6}\right\rbrace\)
\(e.7\cdot3^{x-1}-3^{x+2}=-540\)
\(3^{x-1}\cdot\left(7-3^3\right)=-540\)
\(3^{x-1}\cdot\left(7-27\right)=-540\)
\(3^{x-1}\cdot\left(-20\right)=-540\)
\(3^{x-1}=\left(-540\right):\left(-20\right)\)
\(3^{x-1}=27=3^3\)
⇒ x - 1 = 3
⇒ x = 4

1: ĐKXĐ: x<>1/2
Ta có: \(\frac{2x-1}{4}=\frac{4}{2x-1}\)
=>\(\left(2x-1\right)\left(2x-1\right)=4\cdot4\)
=>\(\left(2x-1\right)^2=16\)
=>\(\left[\begin{array}{l}2x-1=4\\ 2x-1=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4+1=5\\ 2x=-4+1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-\frac32\left(nhận\right)\end{array}\right.\)
2: ĐKXĐ: x<>1/2
\(\frac{2x-1}{27}=\frac{3}{2x-1}\)
=>\(\left(2x-1\right)\left(2x-1\right)=27\cdot3=81\)
=>\(\left(2x-1\right)^2=81\)
=>\(\left[\begin{array}{l}2x-1=9\\ 2x-1=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=10\\ 2x=-8\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\left(nhận\right)\\ x=-4\left(nhận\right)\end{array}\right.\)
3: ĐKXĐ: x∉{0;-1}
Ta có: \(\frac{4}{x}=\frac{8}{x+1}\)
=>\(\frac{1}{x}=\frac{2}{x+1}\)
=>2x=x+1
=>2x-x=1
=>x=1(nhận)
4: ĐKXĐ: x<>-5
Ta có: \(\frac{x-1}{x+5}=\frac67\)
=>7(x-1)=6(x+5)
=>7x-7=6x+30
=>7x-6x=7+30
=>x=37(nhận)
5: \(\frac{x-3}{5}=\frac{5-2x}{11}\)
=>11(x-3)=5(5-2x)
=>11x-33=25-10x
=>21x=25+33=58
=>\(x=\frac{58}{21}\)
6: ĐKXĐ: x∉{-1;-7}
Ta có: \(\frac{x}{x+1}=\frac{x+5}{x+7}\)
=>x(x+7)=(x+1)(x+5)
=>\(x^2+7x=x^2+6x+5\)
=>7x=6x+5
=>7x-6x=5
=>x=5(nhận)
7: ĐKXĐ: x∉{-2/5;-1/5}
ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
=>(2x+3)(10x+2)=(5x+2)(4x+5)
=>\(20x^2+4x+30x+6=20x^2+25x+8x+10\)
=>34x+6=33x+10
=>34x-33x=10-6
=>x=4(nhận)
8: ĐKXĐ: x∉{-2;-8}
ta có: \(\frac{2x-18}{2x+4}=\frac{2x-17}{2x+16}\)
=>\(\frac{2\left(x-9\right)}{2\left(x+2\right)}=\frac{2x-17}{2x+16}\)
=>\(\frac{x-9}{x+2}=\frac{2x-17}{2x+16}\)
=>(2x-17)(x+2)=(x-9)(2x+16)
=>\(2x^2+4x-17x-34=2x^2+16x-9x-144\)
=>-13x-34=7x-144
=>-13x-7x=-144+34
=>-20x=-110
=>\(x=\frac{110}{20}=\frac{11}{2}\) (nhận)

Bài 1:
a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)
\(=5x^4-7x^2-6x^2-3x+11x-30\)
\(=5x^4-13x^2+8x-30\)
\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)
\(=5x^4+20x^3-11x^3+5x-34x-2-10\)
\(=5x^4+9x^3-29x-12\)
b: A(x)+B(x)
\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)
\(=10x^4-4x^3-21x-42\)
A(x)-B(x)
\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)
\(=-9x^3-13x^2+37x-18\)
Bài 2:
a: \(M=2x^2+5x-12\)
Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)
c: P(2x-3)=M
=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)
\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)
=x+4

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)
=>\(\hat{BOD}=180^0-97^0=83^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)
nên tia OE nằm giữa hai tia OA và OD
=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)
=>\(\hat{EOD}=97^0-56^0=41^0\)
Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)
=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)
b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)
nên tia OD nằm giữa hai tia OE và OC
=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)
=>\(\hat{DOC}=82^0-41^0=41^0\)
Ta có: tia OD nằm giữa hai tia OE và OC
\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)
Do đó: OD là phân giác của góc EOC

a: \(D=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
=3
=>D không phụ thuộc vào biến
b: \(E=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
=-24
=>E không phụ thuộc vào biến
Giải:
\(\hat{A}\) + \(\hat{B}\) + \(\hat{C}\) = 180\(^0\) (tổng ba góc trong 1 tam giác)
\(\hat{A}\) = 180\(^0\) - \(\hat{B}-\hat{C}\)
\(\hat{A}\) = 180\(^0\) - \(70^0-30^0\)
\(\hat{A}\) = 110\(^0-30^0\)
\(\hat{A}\) = 80\(^0\)
\(\hat{A}\) = \(D\hat{C}A\)
Mà góc A và góc DCA là hai góc ở vị trí so le trong.
Vậy AB // CD