Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC
\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)
Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều
\(\Rightarrow ED=R\)
\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)
\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\)
Áp dụng định lý talet:
\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)
\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)
\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)
Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)
\(\Rightarrow\Delta ABC\) đều
Bài 1:
Kẻ \(OM\perp AB\), \(OM\)cắt \(CD\)tại \(N\).
Khi đó \(MN=8cm\).
TH1: \(AB,CD\)nằm cùng phía đối với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)
\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).
TH2: \(AB,CD\)nằm khác phía với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)
\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)
Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).
Bài 3:
Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).
\(MA+MB=MA'+MB\ge A'B\)
Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).
Suy ra \(M\left(\frac{5}{3},0\right)\).
Bài 3:
a) Ta có: \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\left(\sqrt{a}+2\right)\)
=0
b) Ta có: \(\dfrac{9-a}{\sqrt{a}+3}-\dfrac{a-6\sqrt{a}+9}{\sqrt{a}-3}\)
\(=3-\sqrt{a}-\sqrt{a}+3\)
\(=6-2\sqrt{a}\)
c) Ta có: \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)
=0
d) Ta có: \(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\)
\(=a+\sqrt{ab}+b+\sqrt{ab}\)
\(=a+2\sqrt{ab}+b\)
Bài 1:
a.
\(\frac{4\sqrt{5}+\sqrt{15}}{\sqrt{5}}=\frac{\sqrt{5}(4+\sqrt{3})}{\sqrt{5}}=4+\sqrt{3}\)
$\frac{7-\sqrt{7}}{3\sqrt{7}}=\frac{\sqrt{7}(\sqrt{7}-1)}{3\sqrt{7}}=\frac{\sqrt{7}-1}{3}$
\(\frac{4\sqrt{2}-\sqrt{6}}{2\sqrt{3}}=\frac{\sqrt{2}(4-\sqrt{3})}{\sqrt{2}.\sqrt{6}}=\frac{4-\sqrt{3}}{\sqrt{6}}\)
\(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{(3\sqrt{2}-2\sqrt{3})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{\sqrt{6}}{3-2}=\sqrt{6}\)
b.
\(\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}(\sqrt{a}-2)}{\sqrt{a}-2}=\sqrt{a}\)
\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}=\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}=1+\sqrt{a}+a\)
\(\frac{a+10\sqrt{a}+25}{\sqrt{a}+5}=\frac{(\sqrt{a}+5)^2}{\sqrt{a}+5}=\sqrt{a}+5\)
\(\frac{a-9}{\sqrt{a}+3}=\frac{(\sqrt{a}-3)(\sqrt{a}+3)}{\sqrt{a}-3}=\sqrt{a}+3\)