\(4+\sqrt{5}\)và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài 1: Giả sử

\(8-\sqrt{2}>4+\sqrt{5}\)

\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)

\(\Leftrightarrow16>7+2\sqrt{10}\)

\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)

Vậy \(8-\sqrt{2}>4+\sqrt{5}\)

10 tháng 11 2016

Bài 3: Ta có

\(x^2+2015x-2014=2\sqrt{2017x-2016}\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)

\(\Leftrightarrow x=1\)

31 tháng 5 2020

câu b làm kiểu gì vậy ạ?

3 tháng 6 2020

Câu b: Tam giác AHB vuông tại H, đường cao AH

=> AD.BD=DH2

Tương tự: AE.EC=HE2

=> AD.BD+AE.EC=DH2+HE2

=DE2 (Pytago)

=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm