K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

8 tháng 3 2016

câu 1 : 0 số cặp x y

câu 2 : ko có giá trị x thỏa mãn

câu 3 : GTLN A=2013

câu 4 : AB=2cm

câu 5: x+y=16

k cho mik nha bạn

17 tháng 8 2019

Bài 2:

1)

a) \(\frac{3}{5}-x=25\%\)

=> \(\frac{3}{5}-x=\frac{1}{4}\)

=> \(x=\frac{3}{5}-\frac{1}{4}\)

=> \(x=\frac{7}{20}\)

Vậy \(x=\frac{7}{20}.\)

b) \(0,16:x=x:36\)

=> \(\frac{0,16}{x}=\frac{x}{36}\)

=> \(0,16.36=x.x\)

=> \(x.x=\frac{144}{25}\)

=> \(x^2=\frac{144}{25}\)

=> \(\left[{}\begin{matrix}x=\frac{12}{5}\\x=-\frac{12}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{12}{5};-\frac{12}{5}\right\}.\)

2)

a) Ta có: \(5x=7y.\)

=> \(\frac{x}{y}=\frac{7}{5}\)

=> \(\frac{x}{7}=\frac{y}{5}\)\(y-x=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{18}{-2}=-9.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=-9=>x=\left(-9\right).7=-63\\\frac{y}{5}=-9=>y=\left(-9\right).5=-45\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-63;-45\right).\)

b) Ta có: \(\frac{x}{y}=0,8.\)

=> \(\frac{x}{y}=\frac{4}{5}\)

=> \(\frac{x}{4}=\frac{y}{5}\)\(x+y=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{4}=2=>x=2.4=8\\\frac{y}{5}=2=>y=2.5=10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(8;10\right).\)

Mình chỉ làm thế này thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

mik chỉ làm b3,2 thôi nha^_^

9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0