Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét (O) có
ΔABD nội tiếp
AB là đường kính
Do đó: ΔABD vuông tại D
=>AD\(\perp\)BD tại D
=>BD\(\perp\)AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)EB tại E
=>AE\(\perp\)CB tại E
Xét ΔCAB có
AE,BD là các đường cao
AE cắt BD tại H
Do đó: H là trực tâm của ΔCAB
=>CH\(\perp\)AB tại K
2: ΔCDH vuông tại D
mà DF là đường trung tuyến
nên DF=FH
=>ΔFDH cân tại F
=>\(\widehat{FDH}=\widehat{FHD}\)
mà \(\widehat{FHD}=\widehat{KHB}\)(hai góc đối đỉnh)
và \(\widehat{KHB}=\widehat{DAB}\left(=90^0-\widehat{DBA}\right)\)
nên \(\widehat{FDH}=\widehat{DAB}\)
Ta có: ΔOBD cân tại O
=>\(\widehat{ODB}=\widehat{OBD}=\widehat{DBA}\)
\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)
\(=\widehat{DBA}+\widehat{DAB}=90^0\)
=>DF là tiếp tuyến của (O)
a.
Đặt \(x+2y+1=a\)
\(\Rightarrow P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)
\(P_{min}=8\) khi \(a=-2\) hay \(x+2y+3=0\)
b.
\(\sqrt{x}-1=a\ge0\Rightarrow\sqrt{x}=a+1\Rightarrow x=a^2+2a+1\)
\(Q=\dfrac{\left(a^2+2a+1\right)+\left(a+1\right)+1}{a}=\dfrac{a^2+3a+3}{a}=a+\dfrac{3}{a}+3\ge2\sqrt{\dfrac{3a}{a}}+3=3+2\sqrt{3}\)
\(Q_{min}=3+2\sqrt{3}\) khi \(a=\sqrt{3}\) hay \(x=4+2\sqrt{3}\)
\(\left\{{}\begin{matrix}-5x+3y=22\\3x+2y=22\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-15x+9y=66\\15x+10y=110\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-44\\3x+2y=22\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=44\\3x=22-2y=22-2\cdot44=22-88=-66\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-22\\y=44\end{matrix}\right.\)
\(2,ĐK:\left\{{}\begin{matrix}\dfrac{2}{a+5}\ge0\\a+5\ne0\end{matrix}\right.\Leftrightarrow a+5>0\Leftrightarrow a>-5\left(C\right)\\ 3,M=2\sqrt{3}=\sqrt{12}< \sqrt{15}=N\left(C\right)\\ 4,=\left|3-\sqrt{3}\right|=3-\sqrt{3}\left(A\right)\\ 5,=\dfrac{3\sqrt{5}-3\sqrt{3}+3\sqrt{5}+3\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{6\sqrt{5}}{2}=3\sqrt{5}\left(C\right)\)