K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2023

`\sqrt{x-5}=3`

`->` ĐKXĐ : `x>=5`

Chứ ko pk `x<=5` (nếu như vậy là ko t/m r)

29 tháng 6 2023

Bài 13:

a) \(\sqrt{x-5}=3\) (ĐK: \(x\le5\) )

\(\Leftrightarrow x-5=3^2\)

\(\Leftrightarrow x-5=9\)

\(\Leftrightarrow x=14\) (tm) 

Vậy: ....

b) \(\sqrt{4-5x}=12\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=12^2\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow-5x=140\)

\(\Leftrightarrow x=\dfrac{140}{-5}=-28\) (tm)

Vậy: ... 

c) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3\)

TH1: \(\left|x-3\right|=-\left(x-3\right)\) với \(x-3< 0\Leftrightarrow x< 3\) 

Pt trở thành: 

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\) ) 

\(\Leftrightarrow-x+3=3\)

\(\Leftrightarrow-x=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

TH2: \(\left|x-3\right|=x-3\) với \(x-3\ge0\Leftrightarrow x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\) )

\(\Leftrightarrow x=6\left(tm\right)\)

Vậy: ....

d) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐK: \(x\ge-5\) ) 

\(\Leftrightarrow\sqrt{4\left(x+5\right)}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9\left(x+5\right)}=4\)

\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\left(tm\right)\)

Vậy: ...

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

Bài 2: 

b: Hàm số này đồng biến vì a=2>0

 

22 tháng 9 2021

làm luôn câu a cho mình luôn dc k ạ

III:

1) \(x-y=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

4) \(a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2\)

5) \(2x-\sqrt{x}-3=\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)\)

6) \(6a^2-5a\sqrt{b}-b=\left(a-\sqrt{b}\right)\left(6a+\sqrt{b}\right)\)

7) \(x-2\sqrt{x-1}-y^2=\left(\sqrt{x-1}-1\right)^2-y^2=\left(\sqrt{x-1}-1-y\right)\left(\sqrt{x-1}-1+y\right)\)

II:

2.8) ĐKXĐ: \(x\ge2\)

2.9: ĐKXĐ: \(\left[{}\begin{matrix}x< \dfrac{1}{2}\\\dfrac{1}{2}< x\le1\end{matrix}\right.\)

2.10: ĐKXĐ: \(x\ne0\)

2.11: ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge3\end{matrix}\right.\)

a: \(P=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-x+2\sqrt{x}+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: 0<=x<9 và x<>4

c: Để P<1 thì 0<=x<9 và x<>4

mà x là số nguyên

nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=-1\\8x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x=-5\\4x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}4x+8y=-4\\4x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-12\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=-2\left(loại\right)\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=-2\\2x+y=-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)

8 tháng 3 2022

\(a,\left\{{}\begin{matrix}3x-2y=-1\\4x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2\left(4x-2\right)=-1\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-8x+4=-1\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x=-5\\y=4x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4.1-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(b,\left\{{}\begin{matrix}x+2y=-1\\4x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\4\left(-1-2y\right)+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\-4-8y+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2y\\-5y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1-2\left(-1\right)\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}x-2y=-4\\-3x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\-3\left(2y-4\right)+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\-6y+12+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-4\\12=10\left(vô.lí\right)\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}2x+y=-2\\4x+2y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=-2\\2x+y=-2\left(luôn.đúng\right)\end{matrix}\right.\)

27 tháng 10 2021

a: \(=1-2-3-4=-8\)

b: \(=8\sqrt{7}\cdot\sqrt{7}-5\sqrt{7}\cdot\sqrt{7}+6\sqrt{7}\cdot\sqrt{7}-4\sqrt{7}\cdot\sqrt{7}\)

\(=56-35+42-28\)

=21+42-28

=35