Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
30 người → 8 giờ
40 người→ ? giờ
lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành công
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
\(2,\\ a,A=-\dfrac{8}{15}\cdot\dfrac{5}{4}+\left(\dfrac{53}{10}-\dfrac{23}{6}\right):\dfrac{4}{9}\\ A=-\dfrac{2}{3}+\dfrac{22}{15}\cdot\dfrac{9}{4}=\dfrac{33}{10}-\dfrac{2}{3}=\dfrac{79}{30}\\ b,B=4\cdot\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{1}{4}:\dfrac{1}{4}+1\\ B=\dfrac{1}{2}+\dfrac{1}{6}+1+1=\dfrac{2}{3}+1+1=\dfrac{8}{3}\)
\(3,\)
\(a,\)Áp dụng t/c dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{2b}{10}=\dfrac{a-b+c}{4}=\dfrac{a-2b+c}{-1}\\ \Rightarrow\dfrac{a-b+c}{a-2b+c}=\dfrac{4}{-1}=-4\)
\(b,\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}=\dfrac{3x-3}{15}=\dfrac{5y-10}{15}=\dfrac{6z-12}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}=\dfrac{3x-3}{15}=\dfrac{5y-10}{15}=\dfrac{6z-12}{12}\\ =\dfrac{3x-3-5y+10+6z-12}{15-15+12}=\dfrac{\left(3x-5y+6x\right)-3+10-12}{12}=\dfrac{4}{12}=3\\ \Rightarrow\left\{{}\begin{matrix}x-1=15\\y-2=9\\z-2=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=16\\y=11\\z=8\end{matrix}\right.\)