K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có 

\(10^2=6^2+8^2\) 

\(\Rightarrow ab^2=ac^2+bc^2\)

Định lý pitago đảo

\(\Rightarrow\Delta abc\perp a\)

23 tháng 10 2023

1: Xét ΔABC có \(CA^2+CB^2=AB^2\)

nên ΔCAB vuông tại C

2: Xét ΔCAB vuông tại C có CK là đường cao

nên \(CK\cdot AB=CA\cdot CB\)

=>\(CK\cdot5=3\cdot4=12\)

=>CK=2,4(cm)

Xét ΔCAB vuông tại C có CK là đường cao

nên \(\left\{{}\begin{matrix}CA^2=AK\cdot AB\\CB^2=BK\cdot BA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AK=\dfrac{4^2}{5}=3,2\left(cm\right)\\BK=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)

a: AB^2=BC^2+AC^2

=>ΔABC vuông tại C

b: E ở đâu vậy bạn?

21 tháng 10 2021

a, BC=BH+HC=8BC=BH+HC=8

Áp dụng HTL: 

⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)

b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)

Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tan⁡AKB^=ABAK=423=233≈tan⁡490

⇒ˆAKB≈490

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

a: ΔBCA vuông tại C

=>BC^2+CA^2=BA^2

=>BC^2=10^2-8^2=36

=>BC=6cm

Xét ΔBAC vuông tại C có CK là đường cao

nên CK*AB=CA*CB; AK*AB=AC^2; BK*BA=BC^2

=>CK=4,8cm; AK=8^2/10=6,4cm; BK=6^2/10=3,6cm

b: Xét tứ giác CHKI có

góc CHK=góc CIK=góc HCI=90 độ

=>CHKI là hình chữ nhật

c: ΔCKA vuông tại K có KI là đường cao

nên CI*CA=CK^2

ΔCKB vuông tại K có KH là đường cao

nên CH*CB=CK^2

=>CI*CA+CH*CB=2*CK^2