Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
\(A=\frac{x-2}{x+2}=\frac{x^2-4x+4}{x^2-4}=\frac{x^2-4-4x+8}{x^2-4}=1+\frac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=1-\frac{4}{x+2}\)
Để \(A\in Z\) thì \(\frac{4}{x+2}\in Z\Leftrightarrow x+2\inƯ\left(4\right)\)
\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)
\(B=\frac{3x-6}{x+6}=\frac{3x+18-24}{x+6}=\frac{3\left(x+6\right)}{x+6}-\frac{24}{x+6}=3-\frac{24}{x+6}\)
Để \(B\in Z\) thì \(\frac{24}{x+6}\in Z\Leftrightarrow x+6\inƯ\left(24\right)\)
\(\Rightarrow x\in\left\{-30;-18;-14;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;2;6;18\right\}\)
\(C=\frac{10-5x}{x-5}=\frac{-\left(5x-25+15\right)}{x-5}=\frac{-5\left(x-5\right)}{x-5}-\frac{15}{x-5}=-5-\frac{15}{x-5}\)
Để \(C\in Z\) thì \(\frac{15}{x-5}\in Z\Leftrightarrow x-5\inƯ\left(15\right)\)
\(\Rightarrow x\in\left\{-10;0;4;6;10;20\right\}\)
\(D=\frac{8x-2}{2-4x}=\frac{-\left(4-8x\right)+2}{2\left(1-2x\right)}=\frac{-4\left(1-2x\right)}{2\left(1-2x\right)}+\frac{2}{2\left(1-2x\right)}=-2+\frac{1}{1-2x}\)
Để \(D\in Z\) thì \(\frac{1}{1-2x}\in Z\Leftrightarrow1-2x\inƯ\left(1\right)\)
\(\Rightarrow x=0\)
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
a, \(4x+9\)
Để đa thức trên có nghiệm thì:
\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)
Vậy, ...
b, \(-5x+6\)
Để đa thức trên có nghiệm thì:
\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)
Vậy, ...
c, \(x^2-1\)
Để đa thức trên có nghiệm thì:
\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy, ...
d, \(x^2-9\)
Để đa thức trên có nghiệm thì:
\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
e, \(x^2-x\)
Để đa thức trên có nghiệm thì:
\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, ...
f, \(x^2-2x\)
Để đa thức trên có nghiệm thì:
\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy, ...
g, \(x^2-3x\)
Để đa thức trên có nghiệm thì:
\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy, ...
h, \(3x^2-4x\)
Để đa thức trên có nghiệm thì:
\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy, ...
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3
=x^3-5x+3
bậc:3
hệ số tự do:3
hệ số cao nhất :3
B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3
=-8x^2-5x+3
bậc:2
hệ số tự do:3
hệ số cao nhất:3
b)A(x)+B(x)=x^3-8^2+10x+6
câu b mik ko đặt tính theo hàng dọc đc thông cảm nha
Lời giải:
a.
\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)
\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)
b.
$C(x)=4x-1=0$
$\Rightarrow x=\frac{1}{4}$
Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$
c.
\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)
\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)
\(=4x^3-6x^2-6x+3\)
Giải típ nèk
Ta có :
\(c)\) \(\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy nghiệm của đa thức \(\left(x-2\right)\left(x+2\right)\) là \(x=-2\) hoặc \(x=2\)
\(d)\) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\sqrt{-1}\left(loai\right)\end{cases}}}\)
Vậy nghiệm của đa thức \(\left(x-1\right)\left(x^2+1\right)\) là \(x=1\)
\(e)\) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(\left(x^2-x\right)+\left(-4x+4\right)=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)+\left(-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(x^2-5x+4\) là \(x=1\) hoặc \(x=4\)
\(f)\) \(2x^2+3x+1=0\)
\(\Leftrightarrow\)\(\left(2x^2+2x\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\x=-1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy nghiệm của đa thức \(2x^2+3x+1\) là \(x=\frac{-1}{2}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
Ta có :
\(a)\) \(x^2-2=0\)
\(\Leftrightarrow\)\(x^2=2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy nghiệm của đa thức \(x^2-2\) là \(x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)
\(b)\) \(x^2-x=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(x^2-x\) là \(x=0\) hoặc \(x=1\)
Chúc bạn học tốt ~