K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Giải típ nèk 

Ta có : 

\(c)\) \(\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-2\end{cases}}}\)

Vậy nghiệm của đa thức \(\left(x-2\right)\left(x+2\right)\) là \(x=-2\) hoặc \(x=2\)

\(d)\) \(\left(x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\sqrt{-1}\left(loai\right)\end{cases}}}\)

Vậy nghiệm của đa thức \(\left(x-1\right)\left(x^2+1\right)\) là \(x=1\)

\(e)\) \(x^2-5x+4=0\)

\(\Leftrightarrow\)\(\left(x^2-x\right)+\left(-4x+4\right)=0\)

\(\Leftrightarrow\)\(x\left(x-1\right)+\left(-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)

Vậy nghiệm của đa thức \(x^2-5x+4\) là \(x=1\) hoặc \(x=4\)

\(f)\) \(2x^2+3x+1=0\)

\(\Leftrightarrow\)\(\left(2x^2+2x\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\)\(2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\x=-1\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)

Vậy nghiệm của đa thức \(2x^2+3x+1\) là \(x=\frac{-1}{2}\) hoặc \(x=-1\)

Chúc bạn học tốt ~ 

10 tháng 4 2018

Ta có : 

\(a)\) \(x^2-2=0\)

\(\Leftrightarrow\)\(x^2=2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy nghiệm của đa thức \(x^2-2\) là \(x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)

\(b)\) \(x^2-x=0\)

\(\Leftrightarrow\)\(x\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy nghiệm của đa thức \(x^2-x\) là \(x=0\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

19 tháng 4 2022

a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)

b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)

\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)

19 tháng 4 2022

mik c.ơn ạ

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

11 tháng 6 2017

\(A=\frac{x-2}{x+2}=\frac{x^2-4x+4}{x^2-4}=\frac{x^2-4-4x+8}{x^2-4}=1+\frac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=1-\frac{4}{x+2}\)

Để   \(A\in Z\)  thì  \(\frac{4}{x+2}\in Z\Leftrightarrow x+2\inƯ\left(4\right)\)

\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)

\(B=\frac{3x-6}{x+6}=\frac{3x+18-24}{x+6}=\frac{3\left(x+6\right)}{x+6}-\frac{24}{x+6}=3-\frac{24}{x+6}\)

Để  \(B\in Z\)  thì  \(\frac{24}{x+6}\in Z\Leftrightarrow x+6\inƯ\left(24\right)\)

\(\Rightarrow x\in\left\{-30;-18;-14;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;2;6;18\right\}\)

\(C=\frac{10-5x}{x-5}=\frac{-\left(5x-25+15\right)}{x-5}=\frac{-5\left(x-5\right)}{x-5}-\frac{15}{x-5}=-5-\frac{15}{x-5}\)

Để  \(C\in Z\)  thì  \(\frac{15}{x-5}\in Z\Leftrightarrow x-5\inƯ\left(15\right)\)

\(\Rightarrow x\in\left\{-10;0;4;6;10;20\right\}\)

\(D=\frac{8x-2}{2-4x}=\frac{-\left(4-8x\right)+2}{2\left(1-2x\right)}=\frac{-4\left(1-2x\right)}{2\left(1-2x\right)}+\frac{2}{2\left(1-2x\right)}=-2+\frac{1}{1-2x}\)

Để  \(D\in Z\)  thì  \(\frac{1}{1-2x}\in Z\Leftrightarrow1-2x\inƯ\left(1\right)\)

\(\Rightarrow x=0\)

11 tháng 6 2017

cj kia đúng đó

4 tháng 7 2017

a) x=3/2

b)x=-1

c) x=5

d) x= 5/2

2 tháng 11 2017

/5x-4/=/x+2/

\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)

vậy x=3/2 hoặc x=1/2

2 tháng 5 2018

a, \(4x+9\)

Để đa thức trên có nghiệm thì:

\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)

Vậy, ...

b, \(-5x+6\)

Để đa thức trên có nghiệm thì:

\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)

Vậy, ...

c, \(x^2-1\)

Để đa thức trên có nghiệm thì:

\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy, ...

d, \(x^2-9\)

Để đa thức trên có nghiệm thì:

\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

e, \(x^2-x\)

Để đa thức trên có nghiệm thì:

\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy, ...

f, \(x^2-2x\)

Để đa thức trên có nghiệm thì:

\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy, ...

g, \(x^2-3x\)

Để đa thức trên có nghiệm thì:

\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy, ...

h, \(3x^2-4x\)

Để đa thức trên có nghiệm thì:

\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy, ...

2 tháng 5 2018

d)<=>x^2=9=(+-3)^2

x=+-3

h)<=> x(3x-4)=0

x=0;x=4/3

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1

a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3 

=x^3-5x+3

bậc:3

hệ số tự do:3

hệ số cao nhất :3

B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3

=-8x^2-5x+3

bậc:2

hệ số tự do:3

hệ số cao nhất:3

b)A(x)+B(x)=x^3-8^2+10x+6

câu b mik ko đặt tính theo hàng dọc đc thông cảm nha

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a.

\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)

\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)

b.

$C(x)=4x-1=0$

$\Rightarrow x=\frac{1}{4}$

Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$

c.

\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)

\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)

\(=4x^3-6x^2-6x+3\)