K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

\(\dfrac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{2}-1}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}\)

\(=\dfrac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)

NV
22 tháng 7 2021

Áp dụng định lý Pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{9^2+12^2}\)

\(\Rightarrow BC=15\)

Ta có:

\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}\Rightarrow sinC=\dfrac{3}{5}\)

\(\Rightarrow C\approx36^052'\)

\(B=90^0-C=53^08'\)

a) Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

1 tháng 8 2019

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

Bài 35: 

b) ĐKXĐ: \(x\notin\left\{5;2\right\}\)

Ta có: \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)

\(\Leftrightarrow\dfrac{x+2}{x-5}+3-\dfrac{6}{2-x}=0\)

\(\Leftrightarrow\dfrac{x+2}{x-5}+3+\dfrac{6}{x-2}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{3\left(x-5\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\dfrac{6\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\)

Suy ra: \(x^2-4+3\left(x^2-7x+10\right)+6x-30=0\)

\(\Leftrightarrow x^2-4+3x^2-21x+30+6x-30=0\)

\(\Leftrightarrow4x^2-15x-4=0\)

\(\Leftrightarrow4x^2-16x+x-4=0\)

\(\Leftrightarrow4x\left(x-4\right)+\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\4x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{4;-\dfrac{1}{4}\right\}\)

Bài 36: 

a) Ta có: \(\left(3x^2-5x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(3x^2-5x+1\right)=0\)

mà \(3x^2-5x+1>0\forall x\)

nên (x-2)(x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: S={2;-2}

22 tháng 7 2021

Gửi bạn nè! Tích giúp mình nha^^undefined

22 tháng 7 2021

thank bn nha

 

NV
11 tháng 10 2019

\(P=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\ge\frac{3.4}{a^2+b^2+2ab}+\frac{2}{\left(a+b\right)^2}=\frac{14}{\left(a+b\right)^2}=14\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)