Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi a;b;c dương ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
Đồng thời: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\left(a+b+c\right)^3\ge27abc\Rightarrow\dfrac{1}{abc}\ge\dfrac{27}{\left(a+b+c\right)^3}\)
Do đó:
\(VT=\dfrac{a^2+b^2+c^2}{2}+\dfrac{a^2+b^2+c^2}{abc}\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{\left(a+b+c\right)^2}{3abc}\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9\left(a+b+c\right)^2}{\left(a+b+c\right)^3}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9}{a+b+c}=\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9}{2\left(a+b+c\right)}+\dfrac{9}{2\left(a+b+c\right)}\)
\(VT\ge3\sqrt[3]{\dfrac{81\left(a+b+c\right)^2}{24\left(a+b+c\right)^2}}=\dfrac{9}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
a,=(x\(^2\)-6x+9)+10-9
=(x-3)\(^2\)+1
Mà(x-3)\(^2\)\(\ge\)0
nên (x-3)\(^2\)+1>0
b,= -(-4x+x\(^2\))-5
= -(4-4x+x\(^2\))-5+4
= -(2-x)\(^2\)-1
Mà -(2-x)\(^2\)\(\le\)0
nên -(2-x)\(^2\)-1< 0
Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :) Thankssssss
a) \(=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
b) \(=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
c) \(=3\left(x^2+4x+4\right)=3\left(x+2\right)^2\)
d) \(=2\left(a^2-b^2\right)-5\left(a-b\right)=2\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)
\(=\left(a-b\right)\left(2a+2b+5\right)\)
e) \(=xy\left(x-y\right)-3\left(x^2-y^2\right)=xy\left(x-y\right)-3\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(xy-3x-3y\right)\)
f) \(=x^2\left(x+5\right)-4\left(x+5\right)=\left(x+5\right)\left(x^2-4\right)\)
\(=\left(x+5\right)\left(x-2\right)\left(x+2\right)\)
\(3x\left(x-y\right)+x-y\)
\(=3x\left(x-y\right)+1\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+1\right)\)
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
b: Xét tứ giác ABDC có \(\widehat{ABD}+\widehat{ACD}=180^0\)
nên ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{BDC}=180^0-\widehat{BAC}=120^0\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Nhân 2 đơn thức
\(a,=x^7\\ b,=8x^7\\ c,=6x^5y^7\\ d,=-10a^6b^5c^3\)
BT áp dụng:
\(a,=10x^5\\ b,=-18a^3b^9\\ c,=-8x^6y^5z\\ d,=15a^6b^4c^3\\ e,=-8x^3y^4\)