Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.
+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.
+ Tháng 4 có nhiệt độ trung bình cao nhất.
+ Tháng 12 có nhiệt độ trung bình thấp nhất.
+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.
+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.
+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.
Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)
Kẻ Az//Bx//Dy
=> BAD = BAz + DAz = (180o - ABx) + (180o - ADy) = 30o + 60o = 90o
Bài 3:
a) \(\left(-\dfrac{2}{3}\right)^2\cdot\left(\dfrac{2}{3}\right)^5\)
\(=\left(\dfrac{2}{3}\right)^2\cdot\left(\dfrac{2}{3}\right)^5\)
\(=\left(\dfrac{2}{3}\right)^{2+5}\)
\(=\left(\dfrac{2}{3}\right)^7\)
b) \(\left(-\dfrac{1}{2}\right)^5\cdot\left(-\dfrac{1}{2}\right)^3\)
\(=\left(-\dfrac{1}{2}\right)^{5+3}\)
\(=\left(-\dfrac{1}{2}\right)^8\)
\(=\left(\dfrac{1}{2}\right)^8\)
c) \(\left(\dfrac{6}{5}\right)^7\cdot\left(-\dfrac{6}{5}\right)^4\)
\(=\left(\dfrac{6}{5}\right)^7\cdot\left(\dfrac{6}{5}\right)^4\)
\(=\left(\dfrac{6}{5}\right)^{7+4}\)
\(=\left(\dfrac{6}{5}\right)^{11}\)
Bài 4:
a) \(\left(\dfrac{3}{7}\right)^4:\left(-\dfrac{3}{7}\right)^2\)
\(=\left(\dfrac{3}{7}\right)^4\cdot\left(\dfrac{3}{7}\right)^2\)
\(=\left(\dfrac{3}{7}\right)^{4+2}\)
\(=\left(\dfrac{3}{7}\right)^6\)
b) \(\left(\dfrac{5}{9}\right)^{11}:\left(\dfrac{5}{9}\right)^7\)
\(=\left(\dfrac{5}{9}\right)^{11-7}\)
\(=\left(\dfrac{5}{9}\right)^4\)
c) \(\left(\dfrac{2}{13}\right)^7:\left(\dfrac{2}{13}\right)^5\)
\(=\left(\dfrac{2}{13}\right)^{7-5}\)
\(=\left(\dfrac{2}{13}\right)^2\)