Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x}+3\)
Vì \(\sqrt{x}\ge0\)
=> \(\sqrt{x}+3\ge3\)
Vậy GTNN của A là 3 khi x=0
\(B=\sqrt{x-1}-5\)
Vì:\(\sqrt{x-1}\ge0\)
\(\Rightarrow\sqrt{x-1}-5\ge-5\)
Vậy GTNN của B là -5 khi x=1
a)Ta thấy: \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+3\ge0+3=3\)
\(\Rightarrow A\ge3\)
Dấu = khi \(x=0\)
Vậy MinA=3 khi x=0
b)Ta thấy: \(\sqrt{x-1}\ge0\)
\(\Rightarrow\sqrt{x-1}-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\)
Dấu = khi x=1
Vậy MinA=-5 khi x=1
mik cũng đang tìm bài này hình đại diên Suga phải
ko
P/s : Làm bừa
\(A=\sqrt{x+3}\)
\(\Leftrightarrow A^2=x+3\ge3\)
\(\Leftrightarrow A\ge\sqrt{3}\)
Min \(A=\sqrt{3}\Leftrightarrow x=0\)
\(A=\sqrt{x}-3\ge-3\)với \(\forall x\)
\(A_{min}=-3\Leftrightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
\(B=\sqrt{x}-1+2=\sqrt{x}+1\ge1\)với \(\forall x\)
\(\Rightarrow B_{min}=1\Leftrightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2