K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Mọi người ơi mau báo cáo sai phạm đứa bên dưới ik cho admin biết

NV
26 tháng 3 2019

\(Q=-3a^2+4a-1=-3\left(a^2-2.a.\frac{2}{3}+\frac{4}{9}\right)+\frac{1}{3}=-3\left(a-\frac{2}{3}\right)^2+\frac{1}{3}\le\frac{1}{3}\)

\(\Rightarrow Q_{max}=\frac{1}{3}\) khi \(a=\frac{2}{3}\)

24 tháng 5 2020

\(P=\frac{1}{a^2+a+1}\) ( với a khác 1 ) 

=> \(\frac{1}{P}=a^2+a+1=a^2+2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3.}{4}\ge\frac{3}{4}\) vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

Dấu "=" xảy ra <=> \(\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)( thỏa mãn )

Vậy GTNN của \(\frac{1}{P}=\frac{3}{4}\)đạt tại  a = - 1/2.

14 tháng 10 2020

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)

ĐK : x ≠ ±1 ; x ≠ 0 ; x ≠ -2019

\(=\left(\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x+2019}{x}\)

\(=\frac{x^2-1}{x^2-1}\times\frac{x+2019}{x}=\frac{x+2019}{x}\)

14 tháng 10 2020

b. \(A=\frac{x+2019}{x}=1+\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\frac{2019}{x}\) đạt giá trị lớn nhất 

<=> \(\hept{\begin{cases}x>0\\x\in Z\end{cases}}\) và x đạt giá trị bé nhất 

<=> x = 1

Khi đó A = 2020 

2 tháng 5 2017

 ĐKXĐ của phương trình : \(\orbr{\begin{cases}x\ne-\frac{1}{3}\\x\ne-3\end{cases}}\)

\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\) 

\(\Leftrightarrow\left(3a-1\right)\left(a+3\right)+\left(a-3\right)\left(3a+1\right)=2\left(3a+1\right)\left(a+3\right)\)\(\Leftrightarrow3a^2+8a-3+3a^2-8a-3=2\left(3a^2+10a+3\right)\)

\(\Leftrightarrow6a^2-6-6a^2-20a-6=0\)

\(\Leftrightarrow-20a-12=0\Leftrightarrow a=\frac{-12}{20}=-\frac{3}{5}\)(NHẬN)

vậy tập nghiệm của phương trình là : S = { -3/5 } 

Tk mk nka !!! Th@nks !!

AH
Akai Haruma
Giáo viên
22 tháng 9

Lời giải:
ĐKXĐ: $a\neq \frac{-1}{3}; a\neq -3$

Ta có:

$\frac{3a-1}{3a+1}+\frac{3-a}{3+a}=2$

$\Leftrightarrow \frac{3a-1}{3a+1}-1=1-\frac{3-a}{3+a}$

$\Leftrightarrow \frac{-2}{3a+1}=\frac{2a}{a+3}$

$\Rightarrow -2(a+3)=2a(3a+1)$

$\Leftrightarrow 6a^2+2a+2a+6=0$
$\Leftrightarrow 6a^2+4a+6=0$

$\Leftrightarrow 3a^2+2a+3=0$

$\Leftrightarrow (a^2+2a+1)+2a^2+2=0$

$\Leftrightarrow (a+1)^2+2a^2=-2<0$ (vô lý - loại)

Vậy PT vô nghiệm.