\(\frac{1}{3}\)< a < 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

a) Bình phương \(x+\frac{1}{x}=3\)

Kết quả: 7
b) Lập phương \(x+\frac{1}{x}=3\)

Kết quả: 18

c) Bình phương \(x^2+\frac{1}{x^2}\)

Kết quả: 47

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

7 tháng 7 2017

\(a.\)\(\frac{13x-16}{15}+\frac{x-32}{35}< \frac{x-6}{21}\)\(MC:105\)

\(\Leftrightarrow\frac{7\left(13x-16\right)}{105}+\frac{3\left(x-2\right)}{105}< \frac{5\left(x-6\right)}{105}\)

\(\text{Khử mẫu ta dc pt tương đương vs pt:}\)

\(\Leftrightarrow7\left(13x-16\right)+3\left(x-2\right)< 5\left(x-6\right)\)

\(\Leftrightarrow91x-112+3x-6< 5x-30\)

\(\Leftrightarrow94x-118< 5x-30\)

\(\Leftrightarrow94x-5x< 118-30\)

\(\Leftrightarrow89x< 88\)

\(\Leftrightarrow x< \frac{88}{89}\)

.\(b.\)\(\frac{5x+12}{14}+\frac{11x+28}{3}>\frac{4x+9}{17}\)\(MC:714\)

\(\text{Khi khử mẫu pt ta dc pt tương đương}:\):

\(\Leftrightarrow51\left(5x+12\right)+238\left(11x+28\right)>42\left(4x+9\right)\)

\(\Leftrightarrow255x+612+2618x+6664>168x+378\)

\(\Leftrightarrow2873x+7276>168x+378\)

\(\Leftrightarrow2873x-168x>-7276+378\)

\(\Leftrightarrow2705x>-6898\)

\(\Leftrightarrow x>-\frac{6898}{2705}\)

7 tháng 12 2016

bài dễ như thế mà còn hỏi nữa

1 tháng 1 2019

Câu 1:

\(Tacó\)

\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)

\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)

\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)

..... 2 câu sau easy

22 tháng 7 2017

a ) \(Q=\frac{\left(a^3-1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)\left(a^2+a+1\right)-3a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)\left(a^2-2a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

\(=\frac{\left(a-1\right)\left(a-1\right)^2}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}\)

b ) Để \(Q< 0\) \(\Leftrightarrow\frac{\left(a-1\right)^2}{a+1}< 0\)

Mà \(\left(a-1\right)^2\ge0\) nên \(a+1< 0\Rightarrow a< -1\)

Vậy \(a< -1\)

6 tháng 12 2016

dễ lắm đấy

5 tháng 8 2017

Theo bđt AM GM Ta có : \(\hept{\begin{cases}1+a^2\ge2a\\1+b^2\ge2b\\1+c^2\ge2c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b^2}\le\frac{a}{2a}=\frac{1}{2}\left(1\right)\\\frac{b}{1+b^2}\le\frac{b}{2b}=\frac{1}{2}\left(2\right)\\\frac{c}{1+c^2}\le\frac{c}{2c}=\frac{1}{2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1) ; (2); (3) ta được :

\(\frac{a}{1+a^2}+\frac{b}{1+c^2}+\frac{c}{1+c^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) (đpcm)