Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{5}{4}x^2y.\left(\frac{-5}{6}xy\right)^0\left(\frac{-7}{3}xy\right)\)= \(\frac{5}{4}x^2y.1.\left(\frac{-7}{3}xy\right)\)= \(\frac{-35}{12}x^3.y^2\)
câu b, c,d làm tương tự như trên nha ^.^
7/4.x+3/2=-4/5
7/4.x=-4/5-3/2
7/4.x=-23/10
x=-23/10:7/4
x=-46/35
vậy x=-46/35
1/4+3/4.x=3/4
1.x=3/4
x=3/4:1
x=3/4
vậy x=3/4
x.(1/4+1/5)-(1/7+1/8)=0
x.9/20-15/56=0
x.51/280=0
x=0:51/280
x=0
vậy x=0
3/35-(3/5+x)=2/7
(3/5+x)=3/35-2/7
(3/35+x)=-1/5
x=-1/5-3/5
x=-4/5
vậy x=-4/5
\(a,1\frac{3}{4}.x+1\frac{1}{2}=\frac{4}{5}\)
\(\frac{7}{4}.x=\frac{4}{5}-\frac{3}{2}\)
\(\frac{7}{4}.x=\frac{-7}{10}\)
\(x=\frac{-7}{10}:\frac{7}{4}\)
\(x=\frac{-2}{5}\)
\(b,\frac{1}{4}+\frac{3}{4}.x=\frac{3}{4}\)
\(\frac{3}{4}.x=\frac{3}{4}-\frac{1}{4}\)
\(\frac{3}{4}.x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{3}{4}\)
\(x=\frac{2}{3}\)
\(c,x.\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(x.\frac{9}{20}-\frac{15}{56}=0\)
\(x.\frac{9}{20}=\frac{15}{56}\)
\(x=\frac{15}{56}:\frac{9}{20}\)
\(x=\frac{25}{42}\)
\(d,\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\frac{3}{5}+x=\frac{3}{35}-\frac{2}{7}\)
\(\frac{3}{5}+x=\frac{-1}{5}\)
\(x=\frac{-1}{5}-\frac{3}{5}\)
\(x=\frac{-4}{5}\)
Học tốt
a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)
b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)
vậy x=25
1.
a) \(\frac{x}{4}=\frac{16}{x^2}\)
\(\Rightarrow x^3=64\)
\(\Rightarrow x^3=4^3\)
\(\Rightarrow x=4\)
b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)
\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)
\(\frac{x}{10}=\frac{5}{2}\)
\(\Rightarrow x=\frac{5.10}{2}=25\)
2.
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
a, \(\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\)Vậy \(x=\frac{1}{4}\)
b, \(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
TH1 : \(x+\frac{2}{3}=\frac{5}{6}\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}=\frac{1}{6}\)
TH2 : \(x+\frac{2}{3}=-\frac{5}{6}\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}=\frac{-9}{6}=\frac{-3}{2}\)
Vậy \(x=\left\{\frac{1}{6};-\frac{3}{2}\right\}\)
a,\(\frac{3}{4}-x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
b,\(\left|x+\frac{2}{3}\right|=\frac{5}{6}\)
\(\Leftrightarrow x+\frac{2}{3}=\pm\frac{5}{6}\)
TH1:\(x+\frac{2}{3}=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=\frac{1}{6}\)
TH2:\(x+\frac{2}{3}=-\frac{5}{6}\)
\(\Leftrightarrow x=-\frac{5}{6}-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{3}{2}\)
a) x/8 − 2/y = 3/4 .
=> x/8 - 2/y = 6/8 .
=> x - 2 = 6
=> x = 6 + 2 .
=> x = 8 .
=> 8/8 - 2/y = 6/8 .
=> 2/y = 8/8 - 6/8 .
=> 2/y = 2/8 /
=> y =8 .
b) x/4 − 2/y = 3/2 .
=> x/4 - 2/y = 6/4 .
=> x - 2 = 6 .
=> x = 6 + 2 .
=> x = 8 .
=> 8/4 - 2/y = 6/4 .
=> 2/y = 8/4 - 6/4 .
=> 2/y = 2/4 .
=> y = 4 .
c) 1/x - 1/y = 1/x . 1/y .
=> y/x.y - x/x.y = 1/x.y .
=> y-x/x.y = 1/x.y .
=> y-x =1 .
=> y là các số nguyên hơn x 1 đơn vị .
x là các nguyên ít hơn y 1 đơn vị .