K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

Bài 2 : 

 \(x^2-x-6=0\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=-2;x=3\)

Ta có : \(A=x^4+2x^3+2x^2+2x+1=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)=\left(x^2+1\right)\left(x+1\right)^2\)

Với x = -2 thì A = \(\left(4+1\right)\left(-2+1\right)^2=5\)

2 tháng 9 2021

Bài 4 : 

\(a^2+b^2=2ab\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\)

Đẳng thức xảy ra khi a = b 

24 tháng 7 2016

x4+x=x(x3+1)=x(x+1)(x2-x+1)

x4+64=x4+16x2+64-16x2=(x2+8)2-(4x)2=(x2+8+4x)(x2+8-4x)

4x4+81=4x4+36x2+81-36x2=(2x2+9)2-(6x)2=(2x2+9+6x)(2x2+9-6x)

64x4+y4=64x4+16(xy)2+y4-16(xy)2=(8x2+y2)-(4xy)2=(8x2+y2-4xy)(8x2+y2=4xy)

x4+4y4=x4+4(xy)2+4y4-4(xy)2=(x2+2y2-2xy)(x2+2y2+2xy)

x4+x2+1=(x4+2x2+1)-x2=(x2+1-x)(x2+1+x)

Mình làm có vài đoạn hơi tắt nha.

72^2+144.28+28^2=(72+28)2=1002=10000

Học tốt!!!!!!!!!!

  • A=x^2-2x+5

= (x2-2x+1)+4

=(x-1)2+4\(\ge\)4

Dấu "=" xảy ra khi x=1

Vậy......................

25 tháng 7 2016

dang nhieu qua ban a

5 tháng 8 2016

\(x^3-4x^2-8x+8\)

\(\Leftrightarrow\left(x^3-4x^2\right)-\left(8x-8\right)\)

\(\Leftrightarrow x^2\left(x-4\right)-4\left(x-4\right)\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-4\right)\)

18 tháng 9 2016

\(frac\{3}{4}\)

2 tháng 4 2019

\(5x-\frac{1}{3x}+2=5x-\frac{7}{3}x-1\)

\(\Rightarrow5x-\frac{1}{3x}+2-5x+\frac{7}{3x}+1=0\)

\(\Rightarrow\frac{6}{3x}+3=0\)

\(\Rightarrow\frac{2}{x}+3=0\)

\(\Rightarrow\frac{2}{x}=-3\)

\(\Rightarrow x=\frac{-2}{3}\)

2 tháng 4 2019

\(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\) (1)

ĐKXĐ :

\(\hept{\begin{cases}3x+2\ne0\\3x-1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}3x\ne-2\\3x\ne1\end{cases}\Rightarrow\hept{\begin{cases}x\ne\frac{-2}{3}\\x\ne\frac{1}{3}\end{cases}}}\)

Từ (1) ta có :

\(\Rightarrow\left(5x-1\right).\left(3x-1\right)=\left(3x+2\right).\left(5x-7\right)\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow15x^2-15x^2-8x+11x=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-15:3\)

\(\Leftrightarrow x=-5.\)( t/m ĐKXĐ )

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\).

\(A=-5x^2-4x+7\)

\(\Leftrightarrow-5A=25x^2+20x-35\)

\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)

\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)

Ta có: 

\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)

Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)