Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko sao à.mik kiểm tra lại thì thấy bạn đúng à.cảm ơn bạn nhiều
1) Ta có: Oz nằm giữa tia Ox và Oy
\(\Rightarrow\widehat{xOz}=\widehat{xOy}-\widehat{yOz}=120^0-30^0=90^0\)
=> Oz⊥Ox
2) Ta có: Ox' là tia đối của tia Ox
\(\Rightarrow\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-120^0=60^0\)(2 góc kề bù)
Ta có: Ox' là tia đối của tia Ox, Oy' là tia đối của tia Oy
\(\widehat{\Rightarrow x'Oy'}=\widehat{xOy}=120^0\)(2 góc đối đỉnh)
1: Trên cùng một nửa mặt phẳng bờ chứa tia Oy, ta có: \(\widehat{yOz}< \widehat{yOx}\)
nên tia Oz nằm giữa hai tia Ox và Oy
Suy ra: \(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)
\(\Leftrightarrow\widehat{xOz}=90^0\)
hay Ox\(\perp\)Oz
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
a: \(=\dfrac{1}{4}\cdot4-\dfrac{3}{4}\cdot\dfrac{4}{5}=1-\dfrac{3}{5}=\dfrac{2}{5}\)
mà quá
8,
1,
\(\Delta MNP\)cân tại M
= > MN = MP , \(\widehat{N}=\widehat{P}\)
a, Xét \(\Delta MIN\perp I\)và \(\Delta MIP\perp I\)có :
\(MN=MP\left(gt\right)\)
\(\widehat{N}=\widehat{P}\left(gt\right)\)
= > \(\Delta MIN=\Delta MIP\left(ch-gn\right)\)
b, \(\Delta MIN=\Delta MIP\)( câu a, )
= > IN = IP ( 2 cạnh tương ứng )
2, \(\Delta MIN=\Delta MIP\)( câu a, phần 1 )
= > \(\widehat{NMI}=\widehat{PMI}\)( 2 góc tương ứng )
Xét \(\Delta LMI\)và \(\Delta KMI\)có :
\(MI\)chung
\(\widehat{NMI}=\widehat{PMI}\)( cmt )
= > \(\Delta LMI=\Delta KMI\left(ch-gn\right)\)
= > LI = KI ( 2 cạnh tương ứng )
Xét \(\Delta LIK\)có :
LI = KI
= > \(\Delta LIK\)cân tại I