Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tham khảo câu 1 link:Câu hỏi của Ngọc Anh Dũng - Toán lớp 8 - Học toán với OnlineMath

câu 1 //Đó là số 24, 25,26.
Giải thích:
Gọi số nhỏ nhất là a-1, các số khác sẽ là a, a+1
ta có (a+1)*a - (a-1)*a =50
=> a*a+a - a*a +a=50 => 2*a=50 =>a=25.
các số còn lại là 24 và 26
a, Gọi 3 só tự nhiên liên tiếp cần tìm là: \(a-1;a;a+1\left(a\in N\right)\)
Ta có: \(a\left(a-1\right)+50=a\left(a+1\right)\)
\(\Leftrightarrow a^2-a+50=a^2+a\)
\(\Leftrightarrow a^2-a^2+50=a+a\)
\(\Leftrightarrow2a=50\Leftrightarrow a=25\)
\(\Rightarrow a-1=25-1=24\)
và \(a+1=25+1=26\)
Vật 3 số tự nhiên liên tiếp cần tìm là 24;25;26

Gọi 3 số lẻ liên tiếp lần lượt là 2k+1;2k+3;2k+5 (k \(\in\) N)
Ta có: (2k+3)(2k+5)-(2k+1)(2k+3)=140
<=>4k2+16k+15-(4k2+8k+3)=140
<=>4k2+16k+15-4k2-8k-3=140
<=>8k+12=140
<=>8k=128<=>k=16
Do đó 2k+1=2.16+1=33
2k+3=2.16+3=35
2k+5=2.16+5=37
Vậy 3 số lẻ liên tiếp là 33;35;37
Gọi 3 số lẻ liên tiếp lần lượt là 2k+1;2k+3;2k+5 (k ∈ N)
Ta có: (2k+3)(2k+5)-(2k+1)(2k+3)=140
<=>4k2+16k+15-(4k2+8k+3)=140
<=>4k2+16k+15-4k2-8k-3=140
<=>8k+12=140
<=>8k=128<=>k=16
Do đó 2k+1=2.16+1=33
2k+3=2.16+3=35
2k+5=2.16+5=37
Vậy 3 số lẻ liên tiếp là 33;35;37

2) gọi bốn số tự nhiên lẽ liên tiếp là: 2x+1;2x+3;2x+5;2x+7
Vì tích của 2 số bất kì - tích của 2 số đầu = 160 nên ta có phương trình:
(2x+5)(2x+7)-(2x+1)(2x+3)=160
<=>4x2+24x+35-4x2-8x-3=160
<=>16x+32=160
<=>16x =128
<=>x =8
vậy số thứ nhất là 2x+1=2.8+1=17
=> 4 số đó là :
17;19;21;23

Gọi ba số lẽ liên tiếp đó là :2x+1;2x+3;2x+5
Vì tích của hai số sau lớn hơn tích của hai số đầu là 440 nên ta có phương trình :
(2x+3)(2x+5)-(2x+1)(2x+3)=440
<=>4x2+16x+15-(4x2+8x+3)=440
<=>4x2+16x+15-4x2-8x-3=440
<=>8x+12=440
<=>8x =428
<=>x =sai đề

gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Gọi ba số lẻ liên tiếp lần lượt là 2k+1;2k+3;2k+5
Tích của hai số sau trừ đi tích của hai số đầu thì được 68 nên ta có:
\(\left(2k+3\right)\left(2k+5\right)-\left(2k+3\right)\left(2k+1\right)=68\)
=>\(\left(2k+3\right)\left(2k+5-2k-1\right)=68\)
=>4(2k+3)=68
=>2k+3=17
=>2k+1=17-2=15; 2k+5=2k+3+2=17+2=19
Vậy: Ba số lẻ cần tìm lần lượt là 15;17;19