Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
Câu 2:
Ta có: \(x^2-2\left(m+1\right)x+m^2+4=0\)
a=1; b=-2m-2; \(c=m^2+4\)
\(\text{Δ}=b^2-4ac\)
\(=\left(-2m-2\right)^2-4\cdot\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16\)
=8m-12
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow8m>12\)
hay \(m>\dfrac{3}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)=2m+2\\x_1x_2=m^2+4\end{matrix}\right.\)
Vì x1 là nghiệm của phương trình nên ta có:
\(x_1^2-2\left(m+1\right)\cdot x_1+m^2+4=0\)
\(\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta có: \(x_1^2+2\left(m+1\right)x_2=2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2-2m^2-20=0\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-3m^2-24=0\)
\(\Leftrightarrow2\left(m+1\right)\cdot\left(2m+2\right)-3m^2-24=0\)
\(\Leftrightarrow4m^2+8m+4-3m^2-24=0\)
\(\Leftrightarrow m^2+8m-20=0\)
Đến đây bạn tự tìm m là xong rồi
a: Ta có: \(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: BCEF nội tiép
=>góc FCE=góc EBF
góc ABD=góc ACD
=>góc ACD=góc ACF
=>CE là phân giác trong của ΔCDN
=>CB là phân giác ngoài của ΔCDN
=>ED/EN=BD/BN
=>ĐPCM
b: Xét \(\left(O\right)\) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét \(\left(O\right)\) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: OM=OA
nên O nằm trên đường trực của MA\(\left(1\right)\)
Ta có: CA=CM
nên C nằm trên đường trực của MA\(\left(2\right)\)
Ta có: OM=OB
nên O nằm trên đường trực của MB\(\left(3\right)\)
Ta có: DM=DB
nên D nằm trên đường trực của MB\(\left(4\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra OC là đường trung trực của MA
hay OC\(\perp\)MA tại E
Từ \(\left(3\right),\left(4\right)\) suy ra OD là đường trung trực của MB
hay OD\(\perp\)MB tại F
Xét tứ giác MEOF có
\(\widehat{MEO}=\widehat{EMF}=\widehat{MFO}=90^0\)
Do đó: MEOF là hình chữ nhật
ĐKXĐ: \(x>0;x\ne1\)
Rút gọn P ta được \(P=\dfrac{x-1}{\sqrt{x}}\)
Để \(P>0\Leftrightarrow\dfrac{x-1}{\sqrt{x}}>0\)
\(\Rightarrow x-1>0\Rightarrow x>1\)