Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-4x=0
<=> x(x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy x=0; x=4
Câu này rất dễ theo đề bài x2 là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0
\(\dfrac{2x-3}{5}-x+2\ge\dfrac{x}{3}\)
\(\Leftrightarrow3\left(2x-3\right)-15\left(x+2\right)\ge5x\)
\(\Leftrightarrow6x-9-15x+30\ge5x\)
\(\Leftrightarrow6x-15x-5x\ge9+30\)
\(\Leftrightarrow-14x\ge-21\)
\(\Leftrightarrow x\le\dfrac{21}{14}\le\dfrac{3}{2}\)
-------------|--------]////////////////--->
0 3/2
lâu rồi cũng không nhớ cách làm :v
\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x-y\right)}{\left(x-y\right)^2x\left(x+y\right)}=\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{x\left(x-y\right)^2\left(x+y\right)}=\dfrac{x^2+y^2}{x}\)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
____
\(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
____
\(\left(x+2\right)^2-y^2\)
\(=\left[\left(x+2\right)-y\right]\left[\left(x+2\right)+y\right]\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
____
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
____
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
____
\(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)
\(=\left[2x\left(y-1\right)-\left(y-1\right)\right]\left[2x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\left(y-1\right)\left(2x-1\right)\left(2x+1\right)\left(y+1\right)\)
ĐK: \(x\ne0\)
\(\frac{20x^2-15x}{5x}+\left(\frac{12-9x}{3}\right)=15\)
\(\Leftrightarrow4x-3+4-3x=15\Leftrightarrow x=14\)
a,Ta có:A=-4(x2-2xy+y2)-(y2-10y+25)+37
= -4(x-y)2-(y-5)2+37
Vì -4(x-y)2≤0 ∀x,y
- (y-5)2 ≤0 ∀y
⇒ A= -4(x-y)2-(y-5)2+37 ≤37
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)
Vậy,Max A=37⇔x=y=5
b,B=-x2-y2+xy+2x+2y
⇔4B=-4x2-4y2+4xy+8x+8y
= -[4x2-4x(y-2)+(y2-4y+4)]-3(\(y^2-2.\dfrac{2}{3}y+\dfrac{4}{9}\))+\(\dfrac{16}{3}\)
\(=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\)
Vì \(-\left(2x-y+2\right)^2\le0\forall x,y\)
\(-3\left(y-\dfrac{2}{3}\right)^2\le0\forall y\)
\(\Rightarrow4B=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\le\dfrac{16}{3}\)
\(\Leftrightarrow B\le\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+2=0\\y-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy,Max B=\(\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3};y=\dfrac{2}{3}\)
AMax chứ ko phải AMin